
Constitution de la matière CM1 Atomes et molécules. Classification périodique.

I L'élément chimique	2
1.) L'atome	2
2.) Notion d'élément chimique	
II Configuration électronique d'un atome	
1.) Les nombres quantiques	2
2.) Structure de la classification périodique	
3.) Familles chimiques	
III La liaison covalente	
1.) Définition. Notation de Lewis	
2.) Electronégativité :	6
3.) Liaisons multiples	6
4.) Nombre de liaisons formées	7
5.) Exceptions à la règle de l'octet	7
6.) Méthode pour trouver la formule de Lewis la plus probable	
IV Géométrie des molécules	
1.) Principe de la théorie VSEPR (Gillespie 1957)	10
2.) Exemples :	10
3.) Polarité des molécules	12

https://lelementarium.fr/

https://www.rsc.org/periodic-table

https://www.elementschimiques.fr/?fr

La <u>classification périodique</u> est proposée en 1869 pour 63 éléments par Mendeleïev qui :

- classe les éléments par masse atomique croissante.
- place dans une même colonne les éléments de propriétés chimiques voisines (6 colonnes).
- laisse quelques cases vides prédisant les propriétés chimiques d'éléments découverts par la suite.

Actuellement 118 éléments chimiques, dont 92 naturels.

<u>I L'élément chimique</u>

1.) L'atome

Un <u>atome</u> est une entité électriquement neutre constituée d'un noyau chargé positivement et d'électrons chargés négativement, en mouvement autour du noyau.

Le <u>noyau</u> est constitué d'un assemblage de <u>nucléons</u> : - les protons chargés positivement.

- les neutrons qui ne sont pas chargés.

Données : Charge élémentaire $e = 1,6 \cdot 10^{-19} \text{ C}$

 $\begin{array}{lll} \text{Proton} & q_p = + \,e & m_p \approx m_n \approx 10^{\text{-}27} \,\text{kg}. \\ \text{Neutron} & q_n = 0 & r_p \approx r_n \approx 10^{\text{-}15} \,\text{m}. \\ \text{Electron} & q_e = - \,e & m_e << m_p \,(m_e \approx 10^{\text{-}30} \,\text{kg}). \end{array}$

Le noyau comporte A nucléons = Z protons + N neutrons

A est le nombre de masse du noyau (entier positif). La masse du noyau est $m \approx A.m_n$ où m_n est la masse d'un neutron. Z est le numéro atomique du noyau (entier positif) ou nombre de charges. La charge du noyau est Q = Z.e, où e est la charge élémentaire.

L'atome (neutre) possède également Z électrons (taille de l'atome $\approx 10^{-10}$ m).

2.) Notion d'élément chimique

Un <u>élément chimique</u> est caractérisé par son numéro atomique Z. Tous les représentants d'un élément chimique ont le même nombre de protons dans le noyau.

Le noyau de l'atome est noté ${}_{Z}^{A}X$ où X est le symbole de l'élément chimique.

Des atomes ayant même Z et des A différents sont des <u>isotopes</u>. Ils correspondent au même élément. <u>Exemple</u>:

Propriété: Au cours d'une réaction chimique, les différents éléments chimiques se conservent.

La <u>masse molaire</u> (en g.mol⁻¹) est la masse d'une mole d'atomes considérés. On l'obtient en faisant la moyenne des masses molaires des différents isotopes naturels, pondérés par leur abondance naturelle $x_i : M = \sum_{isotopes} x_i M_i$

II Configuration électronique d'un atome

1.) Les nombres quantiques

Ils permettent de décrire l'état d'un électron dans un atome.

On appelle <u>niveau</u> ou <u>couche</u> l'ensemble des états électroniques correspondant à une valeur du nombre quantique principal $n \in \mathbb{N}^*$: n 1 2 3 4 5 6 7

(Niveau K L M N)

Chaque niveau comporte n <u>sous-niveaux</u> ou <u>sous-couches</u> caractérisés par le nombre quantique secondaire $l \in \mathbb{N}$

 $0 \le l \le n-1$ Nomenclature l 0 1 2 3 Sous-niveaux s p d f

Nombre maximal d'électrons par sous couche : s² p⁶ d¹⁰ f¹⁴.

2.) Structure de la classification périodique

Les éléments sont rangés de gauche à droite par ordre croissant de numéro atomique Z (nombre de protons).

7 lignes, appelées périodes (numérotées de haut en bas)

18 colonnes (ou <u>familles chimiques</u>)(numérotées de gauche à droite)

Z augmente d'une unité lorsque l'on passe d'une case à l'autre sur une ligne. Chaque ligne se termine par un gaz rare (ou gaz noble).

L'ordre de remplissage des couches électroniques permet d'obtenir la configuration électronique de l'atome à l'état fondamental (c'est-à-dire de plus bas niveau d'énergie).

Règle de Klechkowski

regie de i	KICCIIKO	*****		
l	0(s)	1(p)	2(d)	3(f)
	_			
n = 1	18			
2	28	2p	\	
3	3s	30	3d	
4	48	4p	4d	4f
5	5s	5p	5d	5f
6	68	6p	6d	
7	78	Zp		

- 1. On change de ligne (ou de période) lorsqu'on passe de ns à (n+1)s : on a donc **7 lignes**.
- 2. On place sur une même colonne les éléments ayant **même configuration électronique externe** (c'est-à-dire même configuration dans le niveau occupé de n le plus grand) : on a **18 colonnes**, **les éléments nf étant placés en dehors du tableau.**

1ère ligne : $1s^2$ / 2ème ligne : $2s^2$ $2p^6$ / 3ème ligne : $3s^2$ $3p^6$ / 4ème ligne : $4s^2$ $3d^{10}$ $4p^6$ / 5ème ligne : $5s^2$ $4d^{10}$ $5p^6$ / 6ème ligne : $6s^2$ $4f^{14}$ $5d^{10}$ $6p^6$ / 7ème ligne : $7s^2$ $5f^{14}$ $6d^{10}$ $7p^6$

On appelle <u>électrons de valence</u> ceux de la couche de n le plus grand et éventuellement des sous-couches partiellement remplies de n plus petit. On appelle <u>électrons de cœur</u> tous les autres électrons.

Exemple : Donner le nombre d'électrons de valence, ainsi que sa configuration électronique à partir de leur place dans la classification. Vérifier le numéro atomique.

- Mg, 3ème ligne, 2ème colonne :

- Br 4ème ligne, 17ème colonne.

•	D	acer	۸ 1	7_1	13
_	М	ıacer	ΑI	/=	1 1

3.) Familles chimiques

Les propriétés chimiques d'un atome sont liées aux électrons de valence.

Tous les atomes veulent acquérir la structure du gaz rare le plus proche dans la classification.

- gain d'électron : par formation de liaison covalente ou d'anions
- perte d'électron par formation de cations.

<u>Remarque</u>: Lors de la formation d'un cation, ce sont les électrons de la couche de n le plus élevé qui partent en premier.

<u>Métaux</u>: Tendance à perdre des électrons pour former des cations (ions > 0). Solides cristallins. Atomes bons conducteurs électriques et thermiques. 80 % de la classification.

La conductivité électrique diminue avec la température.

≠ Non-métaux : Tendance à gagner des électrons pour former des anions (ions < 0). Mauvais conducteurs électriques. La conductivité augmente avec la température. 20 % de la classification.

<u>Gaz rares (ou nobles)</u>: 18ème colonne. Gaz monoatomiques dans les Conditions Normales de Température et de Pression. Grande inertie chimique. Atomes très stables, car leur couche externe est saturée.

<u>Bloc s</u>: 2 premières colonnes. Les corps simples correspondants sont des métaux (sauf H), facilement oxydables : ils perdent facilement des électrons, pour acquérir la structure du gaz rare qui précède dans la classification.

<u>Alcalins</u>: première colonne (sauf H). Métaux très mous, très réducteurs. Cèdent facilement un électron. Réagissent avec l'eau et le dioxygène.

Alcalino-terreux : deuxième colonne. Perdent deux électrons.

<u>Bloc p</u>: 6 dernières colonnes. Plutôt oxydants pour les non métaux (en haut à droite), gagnent des électrons pour acquérir la structure du gaz rare qui suit dans la classification. Les corps simples correspondants sont très variés : métaux ou non métaux, gaz rares.

<u>Halogènes</u>: 17^{ième} colonne. Bons oxydants, gagnent facilement des électrons pour former des ions, ou des molécules diatomiques.

Bloc d 10 colonnes Métaux de transition

Les corps simples correspondants sont des métaux durs, résistants mécaniquement, de température de fusion élevée. Les solutions contenant les ions sont souvent colorées.

<u>Lanthanides et actinides</u>
Bloc f Métaux de transition. Peu d'évolution sur une ligne.

III La liaison covalente

1.) Définition. Notation de Lewis

<u>Liaison covalente</u>: Mise en commun de deux électrons entre deux atomes, chaque atome fournissant à la liaison un électron de valence. Les 2 électrons participant à la liaison covalente s'appellent <u>doublet liant</u> (DL).

Les électrons de valence ne participant pas aux liaisons s'appellent électrons non liants. Regroupés deux à deux, ils forment des <u>doublets non liants</u> (DNL).

Remarque : Liaison dative : Liaison pour laquelle les deux électrons de la liaison sont apportés par le même atome.

<u>Structure de Lewis d'une molécule</u>: Schéma représentant l'ensemble des doublets liants et non liants (représentés par des tirets). Ne donne aucune indication sur la géométrie spatiale des molécules.

Valence d'un élément dans une molécule : Nombre de liaisons covalentes qu'il forme.

2.) Electronégativité:

Grandeur sans dimension, notée χ , qui traduit l'aptitude d'un atome A à attirer vers lui le doublet électronique qui l'associe à un autre atome B (liaison covalente). Donne l'aptitude d'un atome à garder ses électrons.

1.	7	**	, .													* 4	2
1 H		-	XI	I = éch	ielle de	Mullil	ken '									. *	2
χ _M : 2,21 χ _P : 2,20	2		<i>χ</i> _P	= éch	elle de	Pauling	50					13	14	15	16	17	
³ Li	⁴ Be	1				-			*			5 B	⁶ C	$7_{\mathbf{N}}$	80	9 F	10
0,84 0,98	1,40 1,57					- 1						1,93 2,04	2,48 2,55	, 2,33 3,04	3,17 3,44	3,90 3,98	
¹¹ Na	12 _{Mg}					8	*					13 _{A1}	¹⁴ Si	15 P	¹⁶ S	17 CI	18
0,74 0,93	1,17 1,31	3	4	5	6	7	8	. 9	10	11	12	1,64 1,61	2,25 1,93	1,84 2,19	2,28 2,58	2,95 3,16	
¹⁹ K	²⁰ Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	30Zn	³¹ Ga	32Ge	33As	³⁴ Se	35 Br	36
0,77 0,82	0,99 1,00	1,36	1,54	- 1,63	1,66	1,55	1,83	1,88	- 1,91	1,36 1,90	1,49 1,65	1,82 1,81	2,50 2,01	1,59 2,18	2,18 2,55	2,62 2,96	
³⁷ Rb	³⁸ Sr	39 Y	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	43 T e	44Ru	45Rh	⁴⁶ Pd	47 Ag	⁴⁸ Cd	⁴⁹ In	⁵⁰ Sn	⁵¹ Sb	52 Te	53 I	54
0,50 0,82	0,85 0,95		1,33	- 1,64	2,16	1,92	- 2,18	2,28	2,20	1,93	1,69	1,57 1,78	2,44 1,80	1,46 2,05	2,08	2,52 2,66	
⁵⁵ Cs	⁵⁶ Ba	⁵⁷ La	72 Hf	73 _{Ta}	74 W	75 _{Re}	⁷⁶ Os	⁷⁷ Ir	78 Pt	79 Au	80 _{Hg}	81 TI	82 Pb	83 Bi	84 Po	85At	86
0,79	0,89	_ _ 1,10	1,29	- 1,50	2,26	1,94	2,18	2,20	2,28	2,54	2,00	1,62	1,87	2,02	2,0	2,2	
	⁸⁸ Ra	89 Ac						,,	1								
0,7	0,9	1,1					ر عدر				-						

3.) Liaisons multiples

Plusieurs paires d'électrons peuvent être mises en commun entre deux atomes d'un édifice polyatomique : 2 paires donnent une liaison double, 3 paires une liaison triple.

Plus le nombre de paires est important, plus les atomes sont fortement liés.

Ethane: distance entre deux carbones dc-c = 154 pm

Energie de liaison $E_l c-c = 346 \text{ kJ.mol}^{-1}$

Ethène : dc-c = 134 pm $E_1 c-c = 623 \text{ kJ.mol}^{-1}$

Ethyne: dc-c = 120 pm $E_1 c-c = 834 \text{ kJ.mol}^{-1}$

4.) Nombre de liaisons formées

Par mise en commun d'électrons, les atomes d'une molécule vont s'associer de façon à ce que chacun d'eux acquière la configuration électronique du gaz rare qui le suit dans la classification périodique.

Règle du duet : H s'associe de façon à être entouré d'un doublet d'électrons, il vérifie la règle du duet.

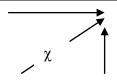
Règle de l'octet : Pour les lignes n = 2 et n = 3 de la classification (et pour les blocs s et p des lignes suivantes), l'atome s'associe souvent de façon à être entouré en général de 4 doublets (8 électrons) et vérifie l'octet.

Se rappeler que les éléments dans le coin en haut à droite de la classification respectent en général l'octet : C N O F Cl

5.) Exceptions à la règle de l'octet

<u>a) Hypervalence</u> : Concerne les éléments <u>uniquement</u> à partir de la troisième période (troisième ligne) grâce aux souscouches d.

b) Lacune électronique : Représente le doublet manquant pour que l'élément vérifie la règle de l'octet ou du duet.


<u>Remarque</u>: <u>Mésomérie</u>: Certaines molécules seront décrites par plusieurs formules de Lewis, appelées formules mésomères. Ces formules n'ont aucune réalité. Il n'y a qu'une seule structure expérimentale. En réalité, les liaisons sont délocalisées, c'est-à-dire communes à un groupement d'atomes.

6.) Méthode pour trouver la formule de Lewis

- 1. Disposer les atomes entourés de leurs électrons de valence autour d'un atome central (souvent le moins électronégatif, si celui-ci n'est pas précisé). Si la structure est globalement chargée, ajouter ou enlever le nombre d'électrons correspondants sur l'élément le plus ou le moins électronégatif.
- 2. Relier les électrons pour former des liaisons entre les atomes, puis des doublets non liants (de façon à ce que les atomes respectent l'octet (pour $n \le 2$) ou l'hypervalence (pour $n \ge 3$).
- 3. Calculer et placer les charges formelles et les lacunes électroniques.

En résumé, pour trouver la formule de Lewis la plus probable, il faut :

- 1 Respect de l'octet : coin en haut à droite de la classification : C N O F Cl
- 2 Hypervalence à partir de $n \ge 3$.
- 3 Moins de charges formelles.
- 4 Charges en accord avec l'électronégativité χ.
- 5 Pas de molécule cyclique à moins de 6 atomes.

IV Géométrie des molécules

1.) Principe de la théorie VSEPR (Gillespie 1957)

Valence Shell Electron Paire Repulsion ou répulsion des paires électroniques des couches de valence.

On considère une molécule construite autour d'un atome central A.

- Tous les doublets liants X et non liants E de la couche externe de valence de l'atome A se trouvent statistiquement à la même distance du noyau, comme s'ils se plaçaient à la surface d'une sphère dont le noyau occuperait le centre.
- Ces doublets se repoussent entre eux.

La géométrie de la molécule sera celle pour laquelle son énergie est minimale, c'est-à-dire les répulsions entre doublets minimales, donc les distances entre doublets maximales.

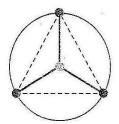
La molécule est notée AX_mE_n m : nombre de groupements auquel est lié l'atome central.

n : nombre de doublets non liants ou d'électrons célibataires.

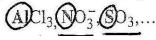
- les doublets non liants sont plus encombrants qu'un doublet liant, ce qui modifie les angles.

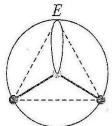
Répulsion DNL- DNL > DNL-DL > DL-DL

- les électrons célibataires comptent comme une paire d'électrons, mais sont moins encombrants qu'un DNL ou qu'un DL.
- les liaisons multiples sont assimilées à des liaisons simples mais sont plus volumineuses.
- les lacunes électroniques ne prennent pas de place.

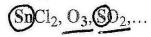

2.) Exemples:

 $\underline{m+n=2}$

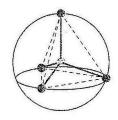


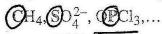

 AX_2E_0 : l'édifice est linéaire : BeH_2CO_2 , HCN,...

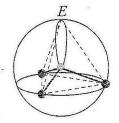
 $\underline{m+n=3}$: Doublets d'électrons pointant vers les sommets d'un triangle.



 AX_3E_0 : l'édifice triangulaire;

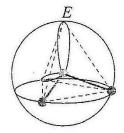


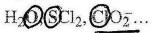

 AX_2E_1 : édifice coudé;



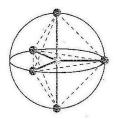
m+n=4 : doublet d'électrons pointant vers les sommets d'un tétraèdre

 AX_4E_0 : édifice tétraédrique ;

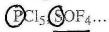



 AX_3E_1 : édifice pyramidal

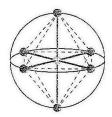
à base triangulaire;



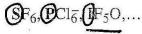
 AX_2E_2 : édifice coudé;



m = 5: doublets d'électrons pointant vers les sommets d'une bipyramide à base triangulaire

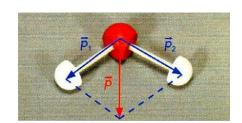


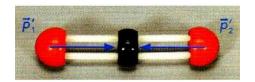
 AX_5E_0 : édifice bipyramidal


à base triangulaire

m = 6: doublets d'électrons pointant vers les sommets d'un octaèdre

 AX_6E_0 : édifice octaédrique ;


3.) Polarité des molécules


Si les atomes liés par une liaison covalente ont une différence d'électronégativité suffisante, la liaison est dite polarisée : l'atome le plus électronégatif porte une charge partielle négative δ^- et l'autre une charge partielle positive δ^+

Remarque : On considère parfois que la différence d'électronégativité doit être supérieure à 0,4.

Une molécule est <u>polaire</u> si le barycentre des charges positives P(+q) n'est pas confondu avec le barycentre des charges négatives N(-q). Elle possède alors un moment dipolaire permanent.

<u>Le moment dipolaire permanent</u> est noté \vec{p} ou $\vec{\mu}$ est défini par $\vec{p} = q \vec{NP}$ Pour l'eau, p = 1,86 D. <u>Unité</u> : le Debye 1D $\approx \frac{1}{3} \cdot 10^{-29} \text{ C.m}$

Structure de la classification périodique

Bloc 2 colonnes n		Bloc d 10 colonnes										Bloc p 6 colonnes <u>Non métaux</u>							
1 Z=1 H														11	on meta	<u>ux</u>			2 He
2		<u>Métaux</u>																	
3					Métaux de transition	<u>1</u>								Si					
4														Ge	As				
5																	Те		
6		57 La	72															At	
7		89 Ac	104																
Alcalins Alca	llino-terreux	X		Bloc f:	14 coloni	nes	Métaux d	e transit	tion				Me	étaux in	termédi	aires		Halogè	nes Gaz rares
Lanthanides	58																		71
Actinides	90																		103

	1	nasse mo	laire ato	mique en	g.mol-	1(1)	ende)										Company (Institute of State of
période	1	I :			atomiqu	e 9,0	Be	sy	mbole (2									18
I	1,0 1 Hydrogène	2		notes : (1)		que du corp							13	14	15	16	17	4,0 Hellum
· II	6,9 Li 3	Be 4			noir = soli	de <u>; rouge</u> =	gaz ; vert :	= liquide (nagenta)= p	oréparé par	synthèse	in the second	10,8 B 5	12,0 C 6 Carbone	14,0 7 Azote	16,0 Oxygène	19,0 9 Fluor	^{20,2} Ne 10
III	23,0 Na 11 Sodium	24,3 Mg 12 Magnésinn	3	4	5	`` 6	7	8	9	10	. 11	12	27,0 AI 13 Aluminium	28,1 Si 14 Silicium	31,0 P 15 Phosphore	32,1 S 16 Soufre	35,5 CI 17— Chlore	39,9 AF 18 Argon
IV	39,1 K 19 Potassium	40,1 Ca 20 Calcium	45,0 Sc 21 Scandium	47,9 Ti 22 Titane	50,9 V 23 Vanadium	52,0 Cr 24 Chrome	54,9 Mn 25 Manganèse	55,8 Fe 26	Co Co Cobali	58,7 Ni 28	63,5 Cu 29 Cuivre	65,4 Zn 30 Zinc	69,7 Ga 31 Gallium	72,6 Ge 32 Germanium	74,9 AS 33 Arsenic	79,0 Se 34 Séléntum	79,9 Br 35~	83,8 K1 36 Krypton
V	85,5 Rb 37 Rubidium	87,6 Sr 38 Strontium	88,9 Y 39 Yttrium	91,2 Zr 40 Zirconlum	92,9 Nb 41 Niobium	95,9 Mo 42 Molybdène	99 Tc 43 Technétium	101,1 Ru 44 Ruthénium	102,9 Rh 45 Rhodium	106,4 Pd 46 Palladium	107,9 Ag 47 Argent	112,4 Cd 48 Cadmlum	I14,8 In 49 Indium	Sn Sn 50 Etaln	Sb 51 Antimolne	127,6 Te 52 Tellure	126,9 I 53	131,3 Xe 54 Xénon
VI	132,9 CS 55 Césium	137,3 Ba 56 Baryum	La Lanthane	178,5 Hf 72 Hatnium	180,9 Ta 73	183,9 W 74 Tungstène	Re 75	190,2 OS 76 Osmium	192,2 Ir 77	195,1 Pt 78 Platine	197,0 Au 79	200,6 Hg 80~~ Mercure	204,4 Tl 81 Thallium	207,2 Pb 82 Plomb	209,0 Bi 83 Bismuth	Po Po 84	At 85	Rn 86
VII	Fr 87 Francium	Ra 88 Radium	Ac 89	VI	140,1 Ce 58	140,9 Pr 59	144,2 Nd 60	145 Pm	150,4 Sm 62	152,0 Eu 63	157,3 Gd 64	158,9 Tb 65	162,5 Dy 66	164,9 Ho	167,3 Er 68	168,9 Tm	173,0 Yb	175,0 Lu 71
9			Ž.	VII	Cérium 232,0 Th 90 Thorium	Praséodyme 231,0 Pa 91 Protectinium	Néodyme 238,0 U 92 Uranium	Prométhium 237,0 93 Neptunium	Samarium 242 Pu 94 Plutonium	Europium 243 Am 95 Américium	Gadolinium 247 Cm) Curium	Terblum 247 BK 97 Berkéllum	Dysprosium 251 Cf 98 Californium	Holmium 254 Es 99 Einsteinium	Erbium 253 Fm 100 Fermium	Thulium 256 Md 101 Mendélévium	Ytterblum 254 Nobélium	Lutétlum 257 LP 103 Lawrencium