Constitution de la matière CM2. Forces intermoléculaires. Solvants.

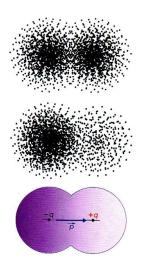
Introduction : Polarisabilité d'un atome ou d'une molécule	. 2
I Forces intermoléculaires	. 3
1.) Interactions de Van Der Waals (liaison faible)	
2.) Liaison hydrogène (ou interaction par pont hydrogène) (liaison faible)	
II Les solvants moléculaires	
1.) Exemple : Effets du solvant Eau	. 5
2.) Classification des solvants	. 6
Conclusion : Composés organiques volatiles	. 7

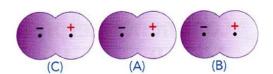
Une étude récente entreprise aux USA, entreprise par Autumn et ses collègues de l'Université de Berkeley [K. Autumn et al., «Adhesive force of a single gecko foot-hair» Nature, 405 (2000) 681-685.], fait apparaître que le gecko, un lézard qui vit dans les régions tropicales, est capable de se mouvoir sur n'importe quelle surface lisse verticale ou sous un plan horizontal tout aussi lisse, par la seule action des forces de Van der Waals. [...] Les pattes du gecko (qui ne porte pas de griffes comme ses cousins de nos pays tempérés) sont terminées par cinq doigts dont l'observation au microscope électronique à balayage fait apparaître qu'ils présentent chacun environ 5000 poils de kératine par millimètre carré, qui se divisent à leur terminaison en plusieurs centaines de soies. Au total, ce lézard possède environ deux milliards de soies qui lui assurent à la fois suspension et progression...le gecko adhère aux murs par des forces de Van der Waals car les spatules du gekco approchent la surface à une échelle nanométrique, condition nécessaire pour les forces de Van der Waals significatives qu'à courtes distances.

Rappels CM1

Electronégativité : Grandeur sans dimension, notée χ , qui traduit l'aptitude d'un atome A à attirer vers lui le doublet électronique qui l'associe à un autre atome B (liaison covalente). Donne l'aptitude d'un atome à garder ses électrons.

Si les atomes liés par une liaison covalente ont une différence d'électronégativité suffisante, la liaison est dite polarisée : l'atome le plus électronégatif porte une charge partielle négative δ^- et l'autre une charge partielle positive δ^+ . Remarque : On considère parfois que la différence d'électronégativité doit être supérieure à 0,4.


Une molécule est polaire si le barycentre des charges positives P(+q) n'est pas confondu avec le barycentre des charges négatives N(-q). Elle possède alors un moment dipolaire permanent.


<u>Le moment dipolaire permanent</u> est noté \vec{p} ou $\vec{\mu}$ est défini par $\vec{p} = q \vec{NP}$ <u>Unité</u>: le Debye 1D $\approx \frac{1}{3}$ 10⁻²⁹ C.m Pour l'eau, p = 1,86 D.

Introduction : Polarisabilité d'un atome ou d'une molécule

Un atome ou une molécule est <u>polarisable</u> s'il apparaît dans l'atome ou la molécule un <u>moment dipolaire (dit induit)</u> \vec{p} , en présence d'un champ électrique extérieur \vec{E} :

 $\vec{p} = \alpha \vec{E}$ où $\alpha > 0$ est appelée polarisabilité de l'atome ou de la molécule.

Polarisation des molécules de diiode dans le cristal de diiode à l'instant t

Polarisation des molécules de diiode dans le cristal de diiode à l'instant t'

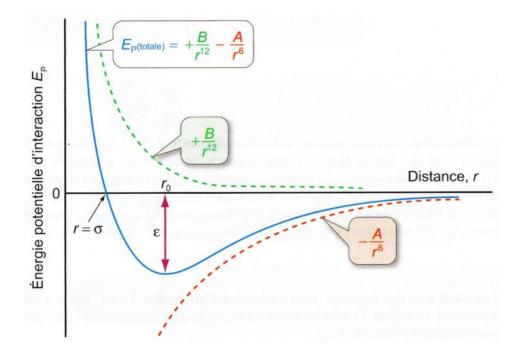
Élén	nent chimique	Z
F	Fluor	9
CI	Chlore	17
Br	Brome	35
-1	lode	53

<u>I Forces intermoléculaires</u>

1.) Interactions de Van Der Waals (liaison faible)

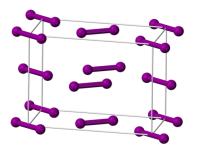
Résultent de l'interaction attractive entre dipôles électrostatiques <u>permanents</u> (molécules polaires) ou <u>induits</u> (molécules polarisables). Sont plus fortes entre molécules polaires qu'entre molécules polarisables.

<u>Cristaux moléculaires</u>: Assemblage de molécules identiques (neutres) gardant leur identité dans le cristal.


Au sein des molécules, les liaisons covalentes sont peu affectées par l'assemblage du cristal.

Entre molécules, les liaisons sont dix à cent fois plus faibles.

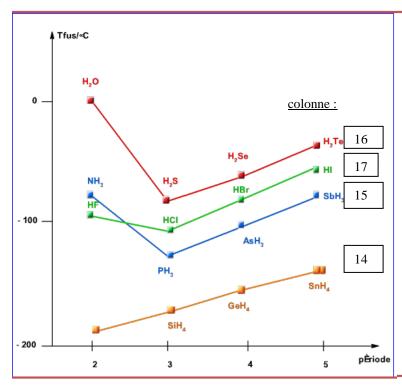
 $E_{liaison} \approx 1 \text{ à } 10 \text{ kJ.mol}^{-1}$ $d \approx 300 \text{ à } 500 \text{ pm}$

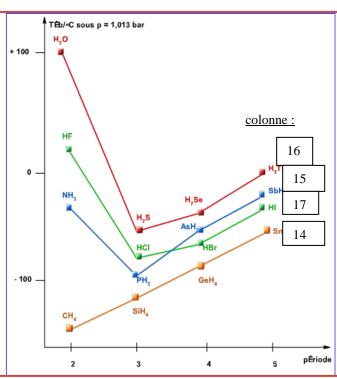

Remarque: Liaison covalente E $_{liaison} \approx 500 \text{ kJ.mol}^{-1} \quad d \approx 150 \text{ pm}$

L'énergie globale d'interaction entre deux molécules est la somme des contributions attractives et répulsive.

solide	température de fusion en K
neon	24
argon	84
krypton	117
xenon	161

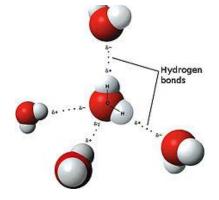
$$\begin{array}{ll} \underline{Ex:Diiode}. & \quad d_{I\text{-}I} = 268 \ pm. \ Entre \ deux \ molécules, \ d_{min} = 356 \ pm. \\ & \quad T_{fusion} = 113 \ ^{\circ}C \qquad \qquad T_{ebullition} = 184 \ ^{\circ}C \end{array}$$




2.) Liaison hydrogène (ou interaction par pont hydrogène) (liaison faible)

<u>Liaison hydrogène</u>: Liaison de nature électrostatique s'exerçant entre l'hydrogène d'une liaison A-H fortement polarisée et d'un atome B d'une molécule possédant un doublet libre (A et B très électronégatifs : N, O, F). Energie de liaison $E_l \approx 10 \text{ kJ.mol}^{-1}$.

Elle est due à une interaction dipôle-dipôle. Elle est plus forte qu'une liaison de Van Der Waals, mais beaucoup moins qu'une liaison covalente ou qu'une liaison ionique (liaisons fortes : Energie de liaison $E_l \approx 100$ kJ.mol⁻¹).


CH ₃ -CH ₂ -Cl	CH ₃ -CH ₂ -OH					
$M = 46 \text{ g.mol}^{-1}$	$M = 46 \text{ g.mol}^{-1}$					
$\mu = 2,06 D$	$\mu = 1,71 D$					
$T_{\rm \acute{e}b} = 12^{\circ}C$	$T_{\rm \acute{e}b} = 78^{\circ} \text{C}$					

<u>Exemple</u>: Glace I (glace ordinaire, il en existe 6 variétés). Liaisons covalentes 99 pm Liaisons hydrogène 177 pm

 $d_{O-O} = 276 \text{ pm}.$

II Les solvants moléculaires

Une solution est obtenue par dissolution d'un composé chimique (le soluté) dans un liquide (le solvant).

1.) Exemple: Effets du solvant Eau

Le chlorure d'hydrogène HCl(g) est une molécule polaire.

Lors de la dissolution du chlorure d'hydrogène dans l'eau, on observe trois étapes.

a) Ionisation : Liée à la polarité des molécules de solvant et de soluté.

Les interactions avec le solvant entraînent la <u>rupture de la liaison covalente</u>. Mais les ions restent proches sous l'action des interactions électrostatiques. Il y a formation de <u>paires d'ions</u>. On parle de liaison ionique si la différence d'électronégativité est forte entre les deux ions.

$$HCl(g) \xrightarrow{eau} (H^+, Cl^-)$$

Il y a solvolyse, c'est-à-dire rupture de liaison covalente.

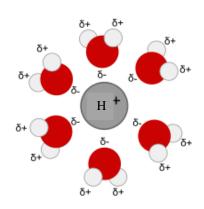
Remarque: Pour un cristal ionique, il y a ionisation simple: $NaCl(s) \xrightarrow{eau} (Na^+, Cl^-)$ C'est un cristal ionique, il n'y a donc pas de liaisons covalentes, mais uniquement une liaison ionique (liaison forte).

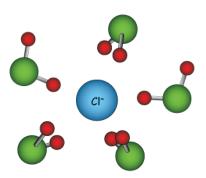
b) Dissociation (ou dispersion): La paire d'ions est dissociée sous l'action de la <u>permittivité relative</u> ε_r de l'eau. $(H^+,Cl^-) \stackrel{eau}{\longrightarrow} H^+ + Cl^-$

<u>Loi de Coulomb</u>: Deux points matériels immobiles M_1 et M_2 de charge électrostatique q_1 et q_2 , et distants de r dans le vide, exercent l'un sur l'autre une force, appelée <u>force d'interaction électrostatique</u> qui est attractive entre deux charges de signes opposés et de norme :

$$F_{q1\rightarrow q2} = \frac{1}{4\pi\varepsilon_0} \frac{|q_1| |q_2|}{r^2}$$

$$\varepsilon_0 = 8,854. \ 10^{-12} \ \mathrm{F.m^{-1}} \quad \text{est la permittivit\'e absolue du vide}$$


Dans l'eau,
$$F_{q1\rightarrow q2} = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \frac{|q_1||q_2|}{r^2}$$
 où $\varepsilon_r \approx 80$


<u>c) Solvatation (ou hydratation, lorsque le solvant est l'eau):</u>Les ions s'entourent de molécules d'eau, à cause des interactions électrostatiques.

La solvatation est liée à la proticité (existence d'un - H^{δ^+} susceptible de former une liaison hydrogène, ou des liaisons de Van der Walls).

$$H^{+} \xrightarrow{eau} H^{+}(aq)$$

$$Cl^{-} \xrightarrow{eau} Cl^{-}(aq)$$

2.) Classification des solvants

Polaire ? On regarde si le solvant possède un moment dipolaire \vec{p}

Polaire	Apolaire
Dispersant ? On regarde ε_r	Donc non dispersant

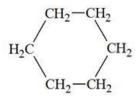
Protique ? Aprotique ou non On regarde - H^{δ^+} capable de former une liaison hydrogène


Les interactions soluté-soluté sont remplacées par des <u>interactions soluté-solvant</u> lors de la dissolution.

Les composés polaires, associés par liaisons hydrogènes et les ions sont très solubles dans l'eau : ils sont dits hydrophiles.

Exemple: HCl

Les composés apolaires associés par liaisons de Van der Waals sont peu solubles dans l'eau. Ils sont dits <u>hydrophobes</u>. <u>Exemples</u> : chaînes carbonées des hydrocarbures, I₂ apolaire, donc peu soluble dans l'eau.


Toluène:

DANGER

TOLUENE HIGHLY FLAMMABLE LIQUID AND VAPOR

Cyclohexane

Conclusion: Composés organiques volatiles

La plupart des solvants utilisés sont des COV (Composés organiques volatiles) nocifs pour l'environnement.

- grande inflammabilité
- effet toxique sur la santé et l'environnement
- -participation à l'effet de serre.

<u>Chimie verte</u> : Réduire les COV, les recycler. Faire des réactions sans solvant, en phase gazeuse, en utilisant des fluides supercritiques, ou simplement l'eau comme solvant.

Rappel CM1: Electronégativité

	1.					ż		16										18
	1 H		F	XI	A = éch	nelle de	Mullil	cen										² He
1.	χ _M : 2,21 χ _P : 2,20	2					Pauling						13	14	15	16	17	3,0
	³ Li	⁴ Be	1										5 B	⁶ C	$7_{\mathbf{N}}$	80	$^9\mathbf{F}$	¹⁰ Ne
2	0,84 0,98	1,40 1,57											1,93 2,04	2,48 2,55	· 2,33 3,04	3,17 3,44	3,90 3,98	
	¹¹ Na	12 _{Mg}						٠					13 _{Al}	¹⁴ Si	15 P	¹⁶ S	¹⁷ CI	18 Ar
3	0,74 0,93	1,17 1,31	3	4	5	6	7	8	. 9	10	11	12	1,64 1,61	2,25 1,93	1,84 2,19	2,28 2,58	2,95 3,16	
٠	19 K	²⁰ Ca	²¹ Sc	²² Ti	23 V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	28 _{Ni}	²⁹ Cu	30Zn	³¹ Ga	32Ge	33_{As}	³⁴ Se	35 Br	³⁶ Kr
4	0,77 0,82	0,99 1,00	1,36	1,54	1,63	1,66	1,55	- 1,83	1,88	- 1,91	1,36 1,90	1,49 1,65	1,82 1,81	2,50 2,01	1,59 2,18	2,18 2,55	2,62 2,96	
·1.	37 Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	44Ru	45 Rh	46 Pd	47 _{Ag}	⁴⁸ Cd	49 In	⁵⁰ Sn	⁵¹ Sb	⁵² Te	⁵³ I	⁵⁴ Xe
5	0,50 0,82	0,85 0,95	 1,22	1,33	- 1,64	2,16	1,92	2,18	2,28	2,20	1,93	1,69	1,57 1,78	2,44 1,80	1,46 2,05	2,08 2,09	2,52 2,66	-
6	⁵⁵ Cs	⁵⁶ Ba	⁵⁷ La	72 _{Hf}	73 _{Ta}	74 W	75 _{Re}	⁷⁶ Os	⁷⁷ Ir	78 Pt,	79 Au	80 _{Hg}	81 TI	82 Pb	83 Bi	84 Po	85 _{At}	86 Rn
6	0,79	0,89		1,29	- 1,50	2,26	1,94	2,18	2,20	- 2,28	2,54	2,00	1,62	1,87	2,02	2,0	2,2	-
	87 _{Fr}	⁸⁸ Ra	⁸⁹ Ac			100		, a	, ·				(4)					
7	0,7	- 0,9	1,1					مر					<u></u>			<u> </u>		

Classification périodique

	wids		dli		Pell		u c	
	Hellum	20,2 Neon	39,9 18 Argon	83,8 161- 36- Krypton	131,3 Xe 54 Xénon	Rn 86 Rndon	175,0 Lu Zutéttum	Lawrencium
	kand	19,0 9	35,5 Chlore, Chlore,	79,9 35	126,9 I 53 Iode	210 At 85 Astate	173,0 Yb 70 Ytterbium	Nobélium
	16	16,0 8 0xygène	32,1 S 16 Soufre	79,0 Se 34 seléntum	127,6 Te 52 Tellure	210 Po 84 Polonium	168,9 Tm 69 Thulton	Mendélévium
	in H	14,0 7 7 Azote	31,0 P 15 Phosphore	AS 33 Arsenic	Sb 51 Antimoine	Bi Bi 83 · Bismuth	167,3 Er 68 Rebium	Permittum
	4	12,0 Carbone	Si 14 Silictum	Ge Germanium	Sn 50	207,2 Pb 82 Piomb	H0 67 H0hnlum 254	99 Einsteinium
			AI AI 13 Aluminium	69,7 Ga 31 Gallion	114,8 In 49 Indium	204,4 T1 81 Thailtium	162,5 Dy 66 Dysprosium 251	Californium
1× &			2	55,4 Zn 30	Cd 48 Cadmium	200,6 Hg 80~~ Mercure		Berkellum
		synthèse	Ħ	63,5 Cu 29 Culvre	107,9 A 9 47 Argent	197,0 Au 79 or	Gd 64 Gadolinium Gadolinium 247	Currinm
		réparé par	9	58,7 Ni 28 Nickel	106,4 Pd 46	195,1 Pt 78 Platine	152,0 Eu 63 - Europlum	Américium
symbole (2)	1,013 bar	nagenta = p	6	58,9 C0 27 Cobalt	102,9 Rh 45 Rhodium	192,2 Ir 77 . Iridium	Sm 62 Sm 62 Sm 62 Sm shartinn Smartinn Pu	Plutonium
SS S	e à 25 °C e	= liquide (೦೦	55,8 Fe 26	Ru 44 Rutténium	190,2 OS 76 Osmium	Prometitium 237.0	Neptumium
Be Constitution Co	notes: (1) basé sur le ¹² C (2) état physique du corps pur simple à 25 °C et <u>1,013</u> bar :	noir = solide <u>; rouge</u> = gaz ; vert = liquide , magenta = préparé par synthèse		Mn 25 Manganèse	43 Technéthum	186,2 Re 75 Rhénium	144,2 Nd 60 Nicodyme 238,0	92 Uranium
	o 12C que du corp	de; rouge	9	Cr Cr 24 Chrome	MO 42 Molybděne	183,9 W 74 Tungstène	140,9 Pr 59 Praséodyme 231,0 Pa	91 Protactinium
ique en g . mol - 1 numéro atomique) basé sur le) état physi	noir = soli	w	50,9 V 23 Vanadium		180,9 Ta 73 Tautale	140,1 Ce 58 certum 232,0	90 Thorium
mique en numéro	notes:(1)		77	47,9 Titane	21,2 Zr 40 Zirconium	178,5 Hf 72 Hataium		VII
plaire ator			ಣ	Sc 21 Scandium	88,9 N 39 Xttrium	138,9 La 57 Lanthane	Actinium Actinium	*
masse molaire atomique en g . mol -1 (1)	~	Be 4	Mg 12.	Ca Catchum	87,6 Sr 38 Stroutium	137,3 Ba 56 Baryum	Ra 88 Radium	
bood	1,0 Hydrogène	6,9 Lithium	23,0 Na 11 Sodium	39,1 K 19 Potnssium	Rb 37 Rubidium	132,9 CS 55 Césium	Erroncium	
ériode) perc;	jacos.		AI	A	MA		