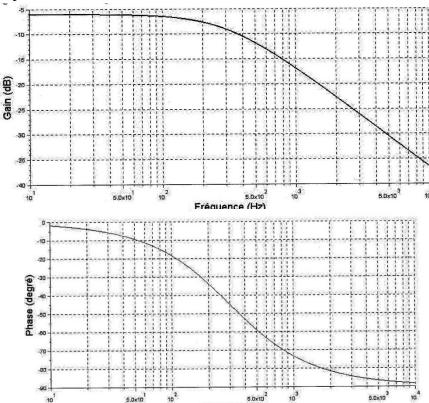

TD SE6 Filtrage de signaux sinusoïdaux

<u>Exercice n°1. Circuit RL série.</u> Déterminer les fonctions de transfert d'un circuit RL série, sortie sur R puis sur L. Les mettre sous forme canonique. A l'aide de schémas équivalents à basse et haute fréquence, déterminer le comportement du filtre.

Exercice n°2. Caractéristiques d'un filtre.

- 1.) En effectuant un schéma équivalent à basses fréquences, puis à hautes fréquences, déterminer sans calculs la nature de ce filtre.
- 2.) Déterminer la fonction de transfert du quadripôle $\underline{H} = \frac{\underline{S}}{\underline{E}}$

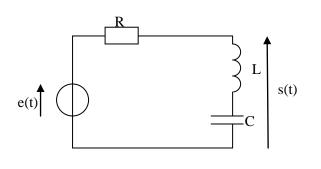


et la mettre sous la forme :

soit
$$\underline{H}(jx) = H_0 \frac{1}{1+jx}$$
 soit $\underline{H}(jx) = H_0 \frac{jx}{1+jx}$

avec $x = \frac{\omega}{\omega_C}$ où ω_C est la pulsation caractéristique du circuit. Exprimer H_0 et ω_C en fonction de R_1 , R_2 et C.

3.) On donne les diagrammes de Bode pour $R=R_1=R_2$. Justifier les parties rectilignes des diagrammes de Bode en gain et en phase. Déterminer un ordre de grandeur du produit RC. Déterminer la bande passante.


Exercice n°3.Circuit RLC série sortie sur L et C.

1.) Déterminer la fonction de transfert du filtre et la mettre sous

la forme :
$$\underline{\underline{H}} = \frac{1 - x^2}{1 - x^2 + j\frac{x}{O}}$$

- 2.) Démontrer la forme du diagramme de Bode asymptotique en gain.
- 3.) Calculer la largeur de la bande coupée à -3dB.

Sur le graphe, $Q = \frac{1}{2\xi}$

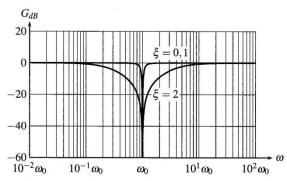
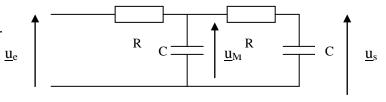


Figure 11.24 - Gain d'un coupe-bande du deuxième ordre.

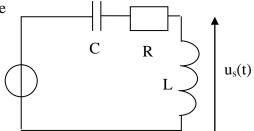

Exercice n°4. Quadripôle RC.

Déterminer la fonction de transfert du filtre ci-contre.

La mettre sous la forme :

$$\underline{H} = \frac{\underline{u_s}}{\underline{u_e}} = \frac{1}{1 - x^2 + j\frac{x}{Q}}$$

Tracer le diagramme de Bode de gain.



Exercice n°5.Circuit RLC série sortie sur L.

1.) Déterminer la fonction de transfert du circuit RLC série, sortie sur L.

2.) En utilisant les courbes ci-dessous, vérifier les pentes des asymptotes, ainsi que la valeur de la phase à haute et basse fréquence.

Déterminer la condition pour laquelle G présente une résonance.

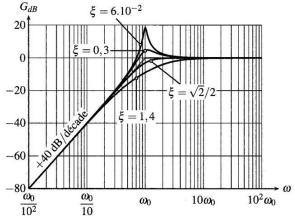
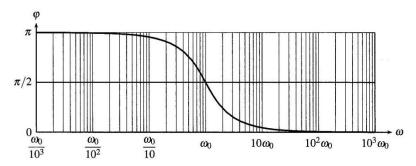



Figure 11.22 - Gain d'un passe-haut du deuxième ordre (les asymptotes sont en

Figure 11.21 – Phase d'un passe-haut du deuxième ordre (tracé pour $\xi = 0,70$).