1

Théorème de Fourier :

Un signal périodique non sinusoïdal de fréquence f_s peut s'écrire

$$s(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos(\omega_n t + \varphi_n)$$
 où $\omega_n = n \omega_s$ et $\omega_s = 2\pi f_s$

 A_n est l'amplitude (constante positive). φ_n est l'avance de phase (constante)

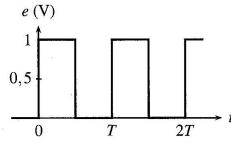
A₀ est la composante continue du signal, ou valeur moyenne ou offset.

A₁ est l'amplitude du signal fondamental de fréquence f_S.

Les A_n sont les amplitudes des <u>harmoniques</u> de fréquence $f_n = n.f_S$ de rang $n \ge 2$.

Analyse spectrale : Opération qui consiste à déterminer la décomposition en signaux sinusoïdaux d'un signal donné.

Exemple: Signal carré



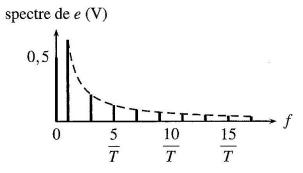
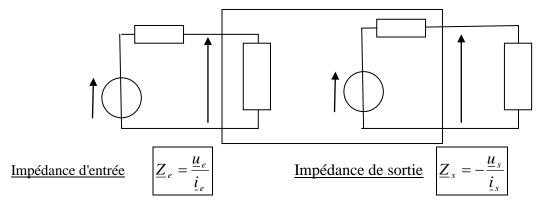


Schéma équivalent du quadripôle



Valeur efficace
$$U_{eff} = \sqrt{\left\langle u^2(t) \right\rangle} = \sqrt{\frac{1}{T} \int_0^T u^2(t) dt}$$
 En régime sinusoïdal, $U_{eff} = \frac{Um}{\sqrt{2}}$

En régime sinusoïdal,
$$U_{\it eff} = \frac{Um}{\sqrt{2}}$$

Mise en cascade de deux filtres. Adaptation d'impédance

Pour avoir
$$\underline{H} = \frac{\underline{s_2}}{\underline{e_1}} = \frac{\underline{s_2}}{\underline{e_2}} \times \frac{\underline{s_1}}{\underline{e_1}} = \underline{H_2} \times \underline{H_1}$$
, il faut : $\underline{i_{s1}} = 0$, soit $\underline{Z_{2e}} \gg 1$ et $\underline{e_2} = \underline{s_1}$ soit $\underline{Z_{2e}} \gg \underline{Z_{1s}}$