Résumé de cours SE6 Filtrage linéaire d'un signal sinusoïdal

Valeur efficace
$$U_{eff} = \sqrt{\langle u^2(t) \rangle} = \sqrt{\frac{1}{T} \int_0^T u^2(t) dt}$$

En régime sinusoïdal, $U_{eff} = \frac{Um}{\sqrt{2}}$

Diagramme de Bode du quadripôle à vide.

$$u_e(t) = U_{em}.cos(\omega t + \varphi_e)$$

$$\underline{u}_e = \underline{U}_{em} e^{j\omega t} \text{ où } \underline{U}_{em} = U_{em} e^{j\varphi_e}$$

$$u_s(t) = U_{sm}.cos(\omega t + \varphi_s)$$

$$\underline{\underline{u}}_s = \underline{\underline{U}}_{sm} e^{j\omega t}$$
 où $\underline{\underline{U}}_{sm} = \underline{U}_{sm} e^{j\varphi_s}$

Amplification en tension ou fonction de transfert du quadripôle (à vide): $\underline{H}(j\omega) = \frac{\underline{u}_s}{\underline{u}_e} = \frac{\underline{U}_{sm}}{\underline{U}_{em}}$

Gain en tension du quadripôle : $G(\omega) = +20log | \underline{H} |$

Diagramme de Bode des amplitudes (ou du gain) : on trace G en fonction de logω.

<u>Phase</u> du quadripôle : $\varphi = \varphi_s - \varphi_e = \arg(\underline{H})$

<u>Diagramme de Bode des phases</u> : on trace φ en fonction de log ω .

<u>Bande passante à -3 dB</u>: Intervalle de pulsation sur lequel $H \ge \frac{Hmax}{\sqrt{2}}$ ou $G \ge Gmax - 3dB$

<u>Pulsations de coupure</u>: pulsations pour laquelle $H = \frac{Hmax}{\sqrt{2}}$ ou G = Gmax - 3dB

Passe bas	Permet de recueillir l'information sur la forme générale du signal. Moyenneur.	
Premier ordre : - RC série sortie sur C - RL série sortie sur R (TD)	$\underline{H} = \frac{H_0}{1 + jx}$	Intégrateur à haute fréquence
Second ordre : - RLC série sortie sur C	$\underline{H} = \frac{H_0}{1 - x^2 + j\frac{x}{Q}}$	Double intégrateur à haute fréquence
Passe haut	Permet de recueillir l'information relative aux détails du signal. Elimine la valeur moyenne.	
Premier ordre : - RC série sortie sur R - RL série sortie sur L (TD)	$\underline{H} = \frac{jx}{1 + jx} H_0$	Dérivateur à basse fréquence
Second ordre : - RLC série sortie sur L (TD)	$\underline{H} = \frac{-x^2}{1 - x^2 + j\frac{x}{Q}}H_0$	Double dérivateur à basse fréquence

Passe bande	Sélectionne une fréquence particulière.	
	Coupe les hautes et basses fréquences.	
Second ordre : - RLC série sortie sur R	$\underline{H} = \frac{H_0}{1 + jQ(x - \frac{1}{x})}$	Dérivateur à basse fréquence Intégrateur à haute fréquence
	$1+JQ(x-\frac{1}{x})$	
Coupe bande	Elimine une fréquence particulière.	
Second ordre : - RLC série sortie sur (L,C) (TD)	$\underline{H} = \frac{1 - x^2}{1 - x^2 + j\frac{x}{Q}}H_0$	