Mécanigue MC5 Loi du moment cinétique.
Mouvement d’un solide en rotation autour d’un axe fixe
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Conclusion : Tabouret d'inertie

Produit scalaire w=u.v = ||u]|.||¥]|. cos «

uUv =014 u.v = 0 si U et ¥ sont perpendiculaires.

Produit vectoriel wW=1uUAD telque:

w est perpendiculaire au plan formé par u, v (u, ?,w) est un triédre direct.
Wl = [l A9l = Il [I¥]]. |sina|

UANDV=—-VAU UAD=0 si u et v sont colinéaires




I Moment d’une force
1.) Point matériel

a) Moment au point A d’une force F appliquée au point M : My(F) =AM AF

b) Moment d’une force F appliguée au point M, par rapport a un axe A:

Définition :  Soit un axe A passant par A, de vecteur unitaire i :  Mp(F) = My(F).1 =l My(F) Il. cos (&, M)

Propriétés: M, (ﬁ) =M, (ﬁ) MA(ﬁ) a méme valeur en tout point de ’axe A.

-




Propriétés . Si (D) et (A) sont coplanaires, alors M, (F) = 0.

1) Si D (droite support de F , passant par M), coupe A (passant par A, de vecteur unitaire ) en un point I,
alors Ma(F) = 0.

2) Si (D) // (4), alors My (F) = 0.

c) Application
Propriété : My(F) = +d.F o0 d est le bras de levier (distance a I'axe).
(D)
A
F
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Ces résultats s'appliquent a une force quelconque en la décomposant en une force coplanaire et une force non
coplanaire a A : F = F/, + F,. Onaalors My (F) = +d.F,.




2.) Systeme de points matériels Syst = {M; (m;)}
a) Moments intérieurs et extérieurs

Moment résultant des forces intérieures au systéme au point A : My ;e = X Ma(fiine) =0
Moment résultant des forces extérieures au systéme au point A : M oxe = 3 My (fi ext)

b) Notion de couple

Couple : Action menée sur un systeme, telle que la force résultante soit nulle;
Un couple ne déplace pas le centre d'inertie d'un systéme, mais tend a
le faire tourner.




c) Liaison pivot : Mécanisme ne laissant a un solide qu'un seul degré de liberté en rotation autour d'un axe A.
On n'a donc pas de translation suivant A.
Liaison pivot idéale : M,(liaison) = 0. On néglige les frottements (en utilisant des roulements a bille ou a aiguille).

trait de coupe
b

stator

~ coupe (AB)

Figure 19.7 — Schéma de principe d’'une liaison pivot.

11 Moment cinétigue

1.) Définition
a) pour un point matériel
Moment cinétique au point A du point matériel M(m) de vitesse ?(M /R)

Ly(M/R) = AM A mB(M/R)

Moment cinétique par rapport a I'axe A (passant par A, de vecteur unitaire) i : Ly(M/R) = ZA(M). u

Propriété : La(M) a méme valeur en tout point de 1’axe A.

Propriétés :  Si D (droite support de ¥, passant par M ), passe par A, alors ZA M) = 0.
Si D (droite support de v passant par M), coupe A (passant par A, de vecteur unitaire i )
ou si (D) // (A), c'est-a-dire si (D) et (A) sont coplanaires, alors L,(M) = 0.

b) pour un systéme de points matériels Syst = {M; (m;)}:

La(Syst/R) = Y L (My/R) = ) My Ay (My/%)




2.) Théoréme du moment cinétigue
a) pour un point matériel M(m)

Théoréme du moment cinétigue en un point fixe A, dans un référentiel R galiléen

% = M,(F) ol F est la résultante des forces appliquées

Théoréme du moment cinétigue par rapport a un axe fixe A, dans un référentiel R galiléen

%I\Z/SR) = M, (F) oU F est la résultante des forces appliquées

b) pour un systéme de points matériels Syst = {M; (m;)}:

Théoréme du moment cinétigue en A point fixe, dans un référentiel R galiléen

dL(Syst/R — . - \ .
ALaGyst/R) _ Myee  (Moment résultant des forces extérieures au systeme au point A)
dt

Théoreme du moment cinétique par rapport a A axe fixe, dans un référentiel R galiléen

dLa(Syst/R . o \ |10
ALAGYSLR) _ aext (moment résultant des forces extérieures au systéme par rapport a 1’axe)
dt




c) Application au pendule simple

3.) Solide en rotation autour d'un axe fixe A = (0z)
a) Moment cinétigue scalaire d'un solide

M(m)

v

| La(S/R) = XiLa(M;) = Jyw 00 Jy = ¥;m;r# est le moment d'inertie du solide par rapport a I'axe A

[

A

v

v

v



Exemples :
~cylindre vide | cylindre plein boule barre
de rayon R derayonR | derayonR | de longueur L
1 2 1

R2 5! R?. ) R2 = 2

m 3 3 m 5 mL

(02) (0z) (0z)

PN
2R 2R 2R L

b) Théoreme du moment cinétique pour un solide S en rotation autour d'un axe fixe

Hypothese : A axe fixe, dans un référentiel R galiléen

dLA(S/R)
dt

dw
—]AE = MAext

0l My €st le moment résultant des forces extérieures au solide par rapport a I'axe
La (S/R) = Jpw et ], = ¥;m;1# est le moment d'inertie du solide par rapport a l'axe A

c¢) Application au pendule pesant

e




Figure 19.11 — Evolution temporelle de I'angle 6 : en trait continu noir, les
mouvements sont pendulaires ; en trait continu gris, il est révolutif. Les pointillés
correspondent & la transition entre ces deux régimes.
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111 Approche énergétique des solides

1.) Théorémes géneraux
Pour un systeme quelconque :

Théoréme de I'énergie cinétique dans R galiléen E.(ty) — E;(t)) = W(Fine) + W (Foxe)
Théoreme de la puissance cinétique  dans R galiléen % = P(ﬁint) + P(ﬁext)

Théoréme de I'énergie mécanique dans R galiléen
Em(ty) —Ep(t) =W Focine) + W (Fogoxe) (B forces non conservatives)

Théoreme de la puissance mécanique  dans R galiléen

dEm - -
7 = P(Fucint ) + P(Fnc ext)
Pour un solide : Py = 0et Wiy, = 0]
2.) Energies
a) Energie cinétique
Pour un systéme de points E.(Syst/R) = Zi%miviz
Pour un solide en translation E.(S/R) = %mvaz
Pour un solide en rotation autour d'un axe fixe E.(S/R) = %]sz

b) Energie potentielle de pesanteur Epp(8) = mgzg + cste

3.) Puissance des actions sur un solide
a) Solide en translation \P,,,,r = F, . ﬁ,;\

b) Solide en rotation autour d'un axe fixe
Théoréme de la puissance cinétique :  dans R galiléen,

dEc
dt

= Pext = Mpext-w
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IV Script python : Pendule pesant. Non isochronisme des oscillations

1.) Principe
Pour I'équation différentielle du pendule pesant en I'absence de frottements :

a2 .
— w3sing = 0

2.) Mise en oeuvre
## MC5 étude du pendule pesant : non isochronisme des oscillations
## resolution par la méthode d'Euler

#importation des bibliotheques
import numpy as np
import matplotlib.pyplot as plt

#définition de la fonction pendule pesant
#on veut résoudre I'équation différentielle du pendule pesant en I'absence de frottements
#tvarieentreaethb

#x=theta et v=x'=theta’
#wo=sqgrt(mgd/J)=1rad/s=omega

Variation de theta en fonction du temps pour différentes valeurs de theta0
4

def pendulepesant(a,b,xo0,vo,omega,n):

|
27 N

N/

return(les_t,les_x,les v)
#trace des courbes :
#tracer les courbes theta(t) superposées pour 10 valeurs de vo comprises 0 et 3 rad/s

plt.axis([0,15,-3,10])
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plt.legend()

plt.grid()
plt.title("Variation de theta en fonction du temps pour différentes valeurs de (dtheta/dt)0")
plt.figure()

#tracer sur un nouveau graphe les courbes theta(t) superposées pour 10 valeurs de xo comprises 0 et 3 rad

plt.axis([0,15,-3,4])

plt.legend()

plt.grid()

plt.title(""Variation de theta en fonction du temps pour différentes valeurs de theta0™)
plt.show()

Conclusion : Tabouret d'inertie




