PTSI1 TD 02

Nombres complexes I

Exercice 1 Écrire les nombres complexes suivants sous forme algébrique :

1.
$$(3-2i)^2$$
 2. $\frac{3-2i}{5+i}$ 3. $\frac{3+i}{2-i} - \frac{2-i}{3+i}$ 4. $\frac{(2+4i)^2}{\overline{1-2i}}$ 5. $\overline{\left(\frac{2-3i}{-3+i}\right)}$

Exercice 2 Dans chacun des cas suivants, déterminer le module du nombre complexe z.

1.
$$z = (1-i)(3+2i)$$
 2. $z = \frac{1-i}{3+2i}$

Exercice 3 Soit z un nombre complexe distinct de -i. Soit $Z = \frac{i-z}{z+i}$.

- 1. Montrer que $|i z|^2 = 1 + |z|^2 + i(z \bar{z})$.
- 2. De même, donner une expression pour $|z+i|^2$.
- 3. Démontrer que $|Z| = 1 \Leftrightarrow z \in \mathbb{R}$.
- 4. Quel est l'ensemble des nombres complexes z tels que Z soit de module 1?

Exercice 4 Déterminer et tracer l'ensemble des points M d'affixe z vérifiant :

1.
$$\overline{z} = iz^2$$
 2. $z + \overline{z} = |z|$ 3. $z + \frac{1}{z} \in \mathbb{R}$ 4. $(z - i)(z - 1) \in \mathbb{R}$ 5. $|2z + 1 - i| = 4$ 6. $|iz - 1| = |z + 2|$ 7. $1 \le |z + 1 + i| \le 2$ 8. $|z - 1 - i| = 1$ et $|z + 1 + i| = \sqrt{5}$

Exercice 5 Égalités et inégalités remarquables

- 1. Montrer que pour tous complexes a et b, $|a+b|^2+|a-b|^2=2(|a|^2+|b|^2)$. Interpréter géométriquement ce résultat.
- 2. Montrer que pour tous complexes a et b, si $|a| \le 1$ et $|b| \le 1$ alors $|a+b| \le |1+a\overline{b}|$. Étudier le cas d'égalité.

Exercice 6 Résoudre dans \mathbb{C} les équations suivantes :

1.
$$2z^2 - z + 1 = 0$$
 2. $-\frac{1}{2}z^2 + 2z + 4 = 0$ 3. $4z^2 - 4(1+i)z + 5(1-2i) = 0$ 4. $z^4 - (3+2i)z^2 + (1+3i) = 0$ 5. $z^2 - 2\cos\theta z + 1 = 0$, où θ est un nombre réel quelconque.

Exercice 7 Dans chacun des cas suivants, trouver une racine évidente de l'équation, puis factoriser le polynôme P.

1.
$$P(z) = z^3 - z - 6$$
 2. $P(z) = z^3 - iz^2 - z + i$ 3. $P(z) = 2z^3 + z^2 + 3z - i + 1$

Exercice 8 On considère un triangle ABC non aplati, et on note O le centre de son cercle circonscrit. On se place dans un repère orthonormé direct de centre O, dans lequel on note a, b et c les affixes respectives de A, B et C.

Montrer que les trois médianes du triangle ABC sont concourantes en un point G d'affixe

$$\frac{a+b+c}{3}$$