PTSI1 TD 03

Fonctions d'une variable réelle

Exercice 1

- 1. Montrer que pour tous réels positifs x et y, $\sqrt{xy} \le \frac{x+y}{2}$, avec égalité si et seulement si x = y.
- 2. Montrer que pour tous réels x et y strictement positifs, $\frac{\ln(x) + \ln(y)}{2} \leq \ln\left(\frac{x+y}{2}\right)$. Interpréter géométriquement ce résultat.

Exercice 2 1. Montrer que pour tous réels x et y:

$$\frac{|x|+|y|}{2} \leq \max\{|x|,|y|\} \leq \sqrt{x^2+y^2} \leq |x|+|y| \leq 2\max\{|x|,|y|\}.$$

2. Dans un repère orthonormé du plan, représenter l'ensemble des points M(x,y) vérifiant :

a)
$$\max\{|x|,|y|\} \le 1$$
 b) $\sqrt{x^2 + y^2} \le 1$ c) $|x| + |y| \le 1$

b)
$$\sqrt{x^2 + y^2} \le 1$$

c)
$$|x| + |y| \le 1$$

Exercice 3 Dans chaque cas étudier, si elles existent, les bornes supérieure et inférieure de l'ensemble A:

1.
$$A = \left\{ \frac{x^2}{1+x^2}, \ x \in \mathbb{R} \right\}$$
. 2. $A = \left\{ \frac{\ln(n)}{n}, \ n \in \mathbb{N}^* \right\}$ 3. $A = \left\{ \left| \frac{1}{n} - \frac{1}{m} \right|, \ n, m \in \mathbb{N}^* \right\}$

Exercice 4

- 1. Montrer que $\forall (x,y) \in \mathbb{R}^2$, $\lfloor x+y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$ ou $\lfloor x+y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor + 1$.
- 2. Montrer que $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*, \left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor.$

Soit la fonction f définie par $f(x) = \frac{x}{|x|}$. Exercice 5

- 1. Déterminer le domaine de définition de f et tracer l'allure de son graphe.
- 2. Étudier les bornes inférieure et supérieure de f.

Soit la fonction f définie sur \mathbb{R} par $f(x) = \sin x + \frac{1}{2}\sin(2x)$ Exercice 6

- 1. Étudier la parité et la périodicité de la fonction f.
- 2. À quel intervalle minimal peut-on réduire l'étude de la fonction f?
- 3. Étudier les variations de la fonction f sur cet intervalle.
- 4. En déduire le maximum et le minimum de la fonction f sur \mathbb{R} .

Exercice 7 Déterminer dans chaque cas si la fonction f est minorée, majorée, ou bornée sur l'intervalle I.

a)
$$f(x) = 2\cos^2 x + 3\sin x + 2\sin I = \mathbb{R}$$
 b) $f(x) = \frac{1+x^2}{1+x} \sin I =]-1, +\infty[$

c)
$$f(x) = \ln x + \frac{1}{1-x} \text{ sur } I =]0,1[$$
 d) $f(x) = \frac{\sin x}{x} \text{ sur } I =]0,+\infty[$

PTSI1 TD 03

Exercice 8 Étudier la fonction f: a) $f: x \longmapsto \frac{x^3 - 1}{x^2 - 1}$

b)
$$f: x \longmapsto \frac{|x|-1}{|x|+1}$$

Exercice 9 Étudier les fonctions suivantes

1.
$$f: \begin{bmatrix} \mathbb{R} & \longrightarrow \mathbb{R} \\ t & \longmapsto (1+\cos t)\sin t \end{bmatrix}$$

$$2. g: x \longmapsto x^{\sqrt{x}}$$

Exercice 10

- 1. Démontrer que $e^x \ge 1 + x$ pour tout $x \in \mathbb{R}$.
- 2. Démontrer que $\ln(1+x) \leq x$ pour tout $x \in]-1$; $+\infty[$.
- 3. Démontrer que $|\sin x| \leq |x|$ pour tout $x \in \mathbb{R}$.
- 4. Soit $x \in \left[0, \frac{\pi}{2}\right]$. Montrer que $\sin x \le x \le \tan x$
- 5. Soit $x \in]0,1[$. Montrer que $x^x(1-x)^{1-x} \ge \frac{1}{2}$

Exercice 11 Soit la fonction f définie par $f: x \mapsto \cot(x) = \frac{\cos(x)}{\sin(x)}$.

On note C la courbe représentative de la fonction f dans un repère du plan.

- 1. (a) Déterminer l'ensemble de définition D_f de la fonction f.
 - (b) Étudier la parité de la fonction f sur D_f .
 - (c) Démontrer que la fonction f est π périodique.
 - (d) Justifier, à l'aide des questions précédentes, que l'on peut étudier la fonction f sur l'intervalle]0; $\frac{\pi}{2}]$.
- 2. (a) Justifier que la courbe C admet une asymptote sur $]0\ ;\ \frac{\pi}{2}].$
 - (b) Déterminer le tableau de variation de la fonction f sur]0; $\frac{\pi}{2}]$.
- 3. (a) Déterminer une équation de la tangente T à la courbe C en son point d'abscisse $\frac{\pi}{2}$.
 - (b) Étudier les variations de la fonction d définie sur $]0; \frac{\pi}{2}]$ par $d(x) = f(x) \left(-x + \frac{\pi}{2}\right)$
 - (c) En déduire la position relative de la droite T et de la courbe C.
- 4. Tracer l'allure du graphe de f sur]0; $\frac{\pi}{2}]$, puis sur $]-\pi$; $0[\cup]0$; $\pi]$ en expliquant les transformations utilisées.

Représenter également la droite T et les éventuelles asymptotes à la courbe C.