N	M	•	
1 7 7	<i>,</i> , , , ,		

Lundi 16 septembre 2024

Test nº 2 Sujet A

- 1. Compléter : Si A est un point du plan et si $r \in \mathbb{R}_+^*$ alors M d'affixe z est sur le cercle de centre A de rayon r ssi ______
- 2. Mettre sous forme algébrique le nombre complexe $z = \frac{1-2\mathrm{i}}{\sqrt{2}-\mathrm{i}}$
- 3. Dans le plan complexe, déterminer l'ensemble E des points M d'affixe $z=x+\mathrm{i} y$ $(x,y\in\mathbb{R})$ tels que $Z=z+\overline{z}^2$ soit réel.

- 4. Déterminer le ou les éventuels points invariants de la transformation f telle que $f(z)=3z+\frac{1}{z} \text{ pour tout } z\in\mathbb{C}^*.$

N	J	M	
1	7 T	, IVI	

Lundi 16 septembre 2024

Test nº 2 Sujet B

- 1. Compléter : Si A et B sont deux points du plan alors M d'affixe z est sur la médiatrice de [AB] ssi _____
- 2. Mettre sous forme algébrique le nombre complexe $z = \frac{2+\mathrm{i}}{-1+\mathrm{i}\sqrt{2}}$
- 3. Dans le plan complexe, déterminer l'ensemble E des points M d'affixe $z=x+\mathrm{i} y$ $(x,y\in\mathbb{R})$ tels que $Z=(z+\mathrm{i})(1+\overline{z})$ soit réel.

- 4. Déterminer le ou les éventuels points invariants de la transformation f telle que $f(z)=-4z-\frac{1}{z}$ pour tout $z\in\mathbb{C}^*.$