PTSI1 TD 05

Applications et bijections

Exercice 1 Soit E un ensemble, A et B des parties de E.

- 1. Montrer que $A \subset B \iff \overline{B} \subset \overline{A}$.
- 2. Montrer que les trois propositions suivantes sont équivalentes :
 - (a) $A \subset B$
 - (b) $A \cap B = A$
 - (c) $A \cup B = B$

Exercice 2 On considère l'application $f: \begin{bmatrix} \mathbb{R}^2 & \longrightarrow \mathbb{R}^2 \\ (x,y) & \longmapsto (x+y,xy) \end{bmatrix}$

- 1. (a) Déterminer l'ensemble des antécédents du couple (5,6) par f.
 - (b) L'application f est-elle injective?
- 2. Montrer que l'image de f est $f(\mathbb{R}^2) = D$, où $D = \{(a, b) \in \mathbb{R}^2 : a^2 4b \ge 0\}$.

Exercice 3 Soit $f: E \to F$. Montrer que:

- 1. $\forall A \in \mathscr{P}(E), \quad A \subset f^{-1}(f(A))$
- 2. $\forall (A,B) \in (\mathscr{P}(E))^2$, $f(A \cup B) = f(A) \cup f(B)$ et $f(A \cap B) \subset f(A) \cap f(B)$.

Exercice 4 Montrer que $f: \begin{bmatrix} \mathbb{R}^2 & \longrightarrow \mathbb{R}^2 \\ (x,y) & \longmapsto (x-4y,2x+3y) \end{bmatrix}$ est bijective, puis expliciter sa réciproque f^{-1} .

Exercice 5 Dans chaque cas, déterminer I et J tels que que f est bijective, puis expliciter sa réciproque f^{-1} :

a)
$$f: \begin{vmatrix} I & \longrightarrow & J \\ x & \longmapsto & x^2 + 4x + 1 \end{vmatrix}$$
 b) $f: \begin{vmatrix} I & \longrightarrow & J \\ x & \longmapsto & \ln\left(x + \sqrt{x^2 - 1}\right) \end{vmatrix}$.

Exercice 6 Soit la fonction $f: \begin{bmatrix} 0, \frac{\pi}{2} \\ x \end{bmatrix} \to \mathbb{R}$ $x \mapsto \frac{1}{\sin(x)}$

- 1. Montrer que f réalise une bijection de $\left]0,\frac{\pi}{2}\right]$ sur un intervalle à déterminer.
- 2. Déterminer le domaine de dérivabilité de f^{-1} et une expression simple de sa dérivée.

PTSI1 TD 05

Exercice 7

1. Calculer
$$\arccos\left(\cos\left(\frac{17\pi}{12}\right)\right)$$
, $\arcsin\left(\sin\left(\frac{17\pi}{12}\right)\right)$ et $\arctan\left(\tan\left(\frac{17\pi}{12}\right)\right)$.

2. Dans chaque cas, préciser l'ensemble de définition, et déterminer une expression simple de f :

$$f(x) = \tan(\arctan(x))$$
 $f(x) = \cos(\arctan(x))$ $f(x) = \sin(\arctan(x))$

$$f(x) = \cos(\arcsin(x))$$
 $f(x) = \sin(\arccos(x))$ $f(x) = \tan(\arccos(x))$

Exercice 8 Résoudre dans \mathbb{R} :

- 1. $2\arccos(x-1) \ge \pi$
- 2. $\arctan(x+1) + \arctan(x-1) = \frac{\pi}{4}$

Exercice 9 On considère la fonction $g: x \mapsto \arcsin\left(\frac{2x}{1+x^2}\right) - 2\arctan(x)$.

- 1. Soit la fonction h définie sur \mathbb{R} par $h(x) = \frac{2x}{1+x^2}$
 - (a) Étudier la parité de la fonction h.
 - (b) Étudier les variations et les limites de la fonction h. Dresser son tableau de variation.
 - (c) Déterminer les antécédents de -1 et de 1 par h.
- 2. (a) Montrer que la fonction g est définie sur \mathbb{R} et dérivable sur $\mathbb{R}\setminus\{-1,1\}$.
 - (b) Montrer que la fonction g est impaire.
 - (c) Donner les valeurs de g(0), g(1), $g(\sqrt{3})$.
- 3. (a) Montrer que pour tout réel x, $\sqrt{1-h^2(x)} = \frac{\left|1-x^2\right|}{1+x^2}$
 - (b) Calculer alors g'(x) pour tout réel $x \in \mathbb{R} \setminus \{-1, 1\}$.
 - (c) Justifier que g est constante sur l'intervalle [-1,1].
 - (d) Démontrer que $\forall x \in [1, +\infty[, g(x) = \pi 4 \operatorname{Arctan}(x)]$.
 - (e) En déduire l'expression de g(x) sur l'intervalle] $-\infty, -1$].
- 4. Tracer l'allure du graphe de g.