PTSI1 TD 06

Calculs algébriques et systèmes linéaires

Exercice 1 Calculer les sommes et produits suivants :

1. a)
$$\sum_{k=1}^{n} (-1)^k 2^{2k}$$

b)
$$\sum_{k=1}^{n} (-1)^k \binom{n}{k}$$
 c) $\sum_{k=1}^{n} k \cdot k!$

c)
$$\sum_{k=1}^{n} k \cdot k!$$

2. a)
$$\prod_{k=1}^{n} k^2 (n+1-k)$$
 b) $\prod_{k=1}^{n} \frac{2k-1}{2k}$ c) $\prod_{k=1}^{n} \frac{(k+1)^k}{k^{k-1}}$

b)
$$\prod_{k=1}^{n} \frac{2k-1}{2k}$$

c)
$$\prod_{k=1}^{n} \frac{(k+1)^k}{k^{k-1}}$$

Pour tout entier naturel $n \ge 1$, on pose $S_n = \sum_{n=1}^n k^2$ et $u_n = \frac{6}{n} S_n$ Exercice 2

- 1. (a) Calculer u_1, u_2 et u_3 .
 - (b) On admet qu'il existe $a, b, c \in \mathbb{R}$ tels que $u_n = an^2 + bn + c, \forall n \in \mathbb{N}^*$. Á l'aide de la question précédente, déterminer a, b et c.
- 2. (a) Démontrer par récurrence que $S_n = \frac{n(n+1)(2n+1)}{6}$ pour tout entier naturel $n \ge 1$.
 - (b) Montrer que le résultat de la question 1.(b) est bien vérifié.

Exercice 3

1. Démontrer que, pour tout
$$n \in \mathbb{N}^*$$
, $\sum_{k=1}^n k^3 = \frac{n^2(n+1)^2}{4}$

2. Calculer
$$S_n = \sum_{k=0}^{n} (2k)^3$$
 et $T_n = \sum_{k=0}^{n} (2k+1)^3$

Exercice 4

1. Soient
$$n \in \mathbb{N}$$
, $p \in \llbracket 0, n \rrbracket$ et $k \in \llbracket 0, p \rrbracket$. Montrer que $\begin{pmatrix} n \\ k \end{pmatrix} \begin{pmatrix} n-k \\ p-k \end{pmatrix} = \begin{pmatrix} p \\ k \end{pmatrix} \begin{pmatrix} n \\ p \end{pmatrix}$.

2. Calculer
$$S_n = \sum_{p=0}^n \sum_{k=0}^p \binom{n}{k} \binom{n-k}{p-k}$$
.

Écrire sous forme algébrique les nombres $a = (1-2i)^4$, $b = \frac{(2+i)^3}{1+i}$ Exercice 5 $c = \sum_{k=-10}^{10} \mathbf{i}^k.$

Exercice 6 Soit la fonction
$$f: \begin{bmatrix} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto (x+1)^n \end{bmatrix}$$

1. Développer f(x). En dérivant l'égalité obtenue, calculer $\sum_{k=0}^{n} k \binom{n}{k}$.

PTSI1 TD 06

2. Calculer les sommes
$$\sum_{k=1}^{n} k^2 \binom{n}{k}$$
 et $\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}$.

Exercice 7 Calculer les sommes suivantes : $1.\sum_{i=1}^{n}\sum_{j=1}^{n}i2^{j}$ $2.\sum_{i=1}^{n}\sum_{j=1}^{n}\min\{i,j\}$

3.
$$\sum_{i=1}^{n} \sum_{j=1}^{i} \frac{i}{j+n}$$
 4. $\sum_{i=0}^{n} \sum_{j=i}^{n} {j \choose i}$.

Exercice 8 Soit $m \in \mathbb{R}$. Résoudre les systèmes suivants : 1. $\begin{cases} 5x - 6y = m \\ 6x - 7y = m + 1 \end{cases}$ 2. $\begin{cases} mx + y = 1 \\ 3x - 2y = 6 \end{cases}$

Exercice 9 Résoudre les systèmes suivants : 1.
$$\begin{cases} (1+i)x + (1-i)y = 4+2i \\ ix + (2i+1)y = 3i-1 \end{cases}$$
 2.
$$\begin{cases} (1-2i)x + 2y = 3-7i \\ 3x - (1-i)y = 11+3i \end{cases}$$

Exercice 10 Discuter en fonction des valeurs des réels a, b, c, l'ensemble des solutions du système suivant : $\begin{cases} 2x-y+z=a\\ -x+2y+2z=b\\ 4x-5y-3z=c \end{cases}$