Exercices École Ouverte PCSI-PTSI

Rappels

— On définit les fonctions ch et sh par :

$$\forall x \in \mathbb{R}$$
 $\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$ et $\operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$

Ces fonctions sont dérivables sur \mathbb{R} avec ch' = sh et sh' = ch.

— Arccos et Arcsin sont dérivables sur]-1;1[avec

$$\forall x \in]-1;1[\quad \operatorname{Arccos}'(x) = \frac{-1}{\sqrt{1-x^2}} \quad \text{et } \operatorname{Arcsin}'(x) = \frac{1}{\sqrt{1-x^2}}$$

— Arctan est dérivable sur \mathbb{R} avec

$$\forall x \in \mathbb{R} \quad \operatorname{Arctan}'(x) = \frac{1}{1+x^2}$$

- Pour tout réel a > 0 et tout réel b on définit $a^b = e^{b \ln a}$.
- Si f est dérivable en a et g dérivable en f(a) alors $g \circ f : x \mapsto g(f(x))$ est dérivable en a avec

$$(g \circ f)'(a) = f'(a) g'(f(a))$$

— Une fonction $f: I \to J$ est dite bijective si pour tout $y \in J$, il existe un unique antécédent $x \in I$ tel que y = f(x). À y fixé, cet unique antécédent est noté $f^{-1}(y)$. La fonction $y \mapsto f^{-1}(y)$ est appelée la bijection réciproque de f, notée f^{-1} .

1 Fonctions

Exercice 1 Calculer les ensembles de définition, de dérivabilité, puis la dérivée des fonctions dont les expressions sont données par

$$a(x) = (2x^2 - x - 1)^6 \qquad b(x) = 2x + 1 - \frac{3}{(x - 2)^3} \qquad c(x) = x \operatorname{Arccos} (1 - x)$$

$$d(x) = \sqrt{\frac{1 - x}{1 + x}} \qquad e(x) = \sqrt{1 - \ln(x)} \qquad f(x) = x^3 e^{-3x + 2}$$

$$g(x) = \ln(x^2 + 3x) \qquad h(x) = (\operatorname{ch} x)^x \qquad i(x) = \operatorname{Arctan} \left(\frac{1}{x}\right)$$

Exercice 2 Résoudre les équations suivantes

(a)
$$\ln(2x^2+1)-1 = \ln(2x+1)$$
 (b) $(\ln x)^2+3\ln x-4=0$ (c) $\ln(x)+\ln(x+3)=2\ln(2)$

(d) $\ln(x+1) + \ln(x-3) = 2\ln(x-2)$ (e) $e^{2x} + e^x - 2 = 0$ (f) $2e^x = e^{x^2}$

(g) $e^x - 4e^{-x} = 1$ (h) $\frac{\ln(x)}{\ln(a)} = \frac{\ln(a)}{\ln(x)}, a > 0, a \neq 1$ (i) $\frac{\ln(x)}{\ln 3} - \frac{\ln(x)}{\ln 2} = 1$

Exercice 3 Résoudre les inéquations suivantes :

(a) $e^{-2x} \ge \frac{1}{2}$ (b) $e^x < \frac{1}{4}e^{x^2}$ (c) $\ln\left(\frac{x-1}{x+1}\right) \ge 1$

(d) $\frac{e^x + 1}{e^x - 1} \le 2$ (e) $e^x \ge e^{2x} - 1$ (f) $\ln(e^x - e^{-x}) > 2$

Exercice 4

1. Résoudre l'équation : $\sqrt{e^{2x} - 3e^x + 2} = e^x - 2$

2. Résoudre l'équation de paramètre réel $m: e^x - e^{-x} = 2m$

Exercice 5 Déterminer les limites suivantes :

(a) $\lim_{x \to +\infty} (\ln(x+1) - \ln(2x-3))$ (b) $\lim_{x \to 0^+} \sqrt{x} \ln\left(\frac{x}{x+1}\right)$ (c) $\lim_{x \to +\infty} x\sqrt{x} (e^{-x})^3$

(d) $\lim_{x \to +\infty} \left(e^x - 3x^2 - 1 \right)$ (e) $\lim_{x \to +\infty} \left(\ln(x) - x^2 \right)$ (f) $\lim_{x \to +\infty} \frac{\ln(x+1)}{x}$ (g) $\lim_{x \to -\infty} x e^{-x^2}$

(h) $\lim_{x \to 0^+} \frac{x^3 + 2x^2}{x^2 + 1} e^{\frac{1}{x}}$ (i) $\lim_{x \to +\infty} \frac{\ln(x)}{e^x}$

Exercice 6 Soit f la fonction définie sur $]0, +\infty[$ par $f(x) = x^2 \ln x$.

1. On considère la fonction d définie sur $]0, +\infty[$ par $d(x) = x^2 \ln x - x + 1.$

- (a) Déterminer les fonctions d' et d''.
- (b) En déduire les variations de d'.
- (c) Montrer que $d'(x) \leq 0$ pour tout $x \in]0,1]$.
- (d) Établir les variations puis le signe de d.
- 2. Donner l'équation de la tangente à la courbe de f au point d'abscisse 1.
- 3. Déterminer la position relative de la courbe de f par rapport à cette tangente.
- 4. Tracer la tangente et la courbe représentative de f.

Exercice 7 On considère la fonction f définie par :

$$f(x) = \ln\left(x + \sqrt{1 + x^2}\right)$$

On note \mathcal{C}_f sa courbe représentative dans un repère orthonormé.

- 1. (a) Montrer que pour tout $x \in \mathbb{R}$, $x + \sqrt{1 + x^2} > 0$.
 - (b) En déduire l'ensemble de définition de f.
- 2. (a) Montrer que pour tout $x \in \mathbb{R}$, f(x) + f(-x) = 0.
 - (b) En déduire quelle est la parité de f.
- 3. (a) Calculer la dérivée de f, et en donner une expression simple.
 - (b) Étudier les variations de f.
 - (c) Déterminer l'équation de la tangente T à la courbe de f au point d'abscisse 0.
- 4. (a) Montrer que pour tout $x \in \mathbb{R}$, sh [f(x)] = x.
 - (b) Que peut-on dire des fonctions f et sinus hyperbolique?
 - (c) En déduire la solution de l'équation sh x = 2.

Exercice 8

- 1. Soit $\psi(x) = \operatorname{sh}^2(x) + \operatorname{sh}(x) + 1$. Montrer que $\psi(x) > 0$ pour tout réel x.
- 2. On considère maintenant la fonction $h:]-1, 1 [\to \mathbb{R}$ définie par $h(x) = e^{\sinh(x)} x 1$. Calculer h'(x) et h''(x). Observer que $h''(x) = \psi(x)e^{\sinh(x)}$.
- 3. En déduire les tableaux de variations et de signes de h' puis de h.
- 4. Montrer que pour tout $x \in [0, 1[$ on a $1 + x \le e^{\operatorname{sh}(x)} \le \frac{1}{1 x}]$
- 5. Soit $p \in \mathbb{N}^*$. Déduire du 4) que, pour tout entier naturel supérieur ou égal à 2, alors

$$\ln\left(\frac{np+1}{n}\right) \leqslant \sum_{k=-n}^{pn} \operatorname{sh}\left(\frac{1}{k}\right) \leqslant \ln\left(\frac{np}{n-1}\right)$$

6. Posons $S_n = \sum_{k=n}^{pn} \operatorname{sh}\left(\frac{1}{k}\right)$. Déterminer la limite de la suite $(S_n)_{n\geqslant 2}$.

2 Nombres complexes

Exercice 1

1. Déterminer la forme algébrique des complexes suivants :

$$a = \frac{(2-i)^2}{1+2i}$$
 $b = \frac{5+i}{3-i} - \frac{3+i}{5-i}$ $c_n = \left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)^{6n}$ où $n \in \mathbb{N}$.

2. Déterminer les formes exponentielles des complexes suivants où x est un paramètre réel :

$$a = \frac{3}{1 + i\sqrt{3}}, b = \left(\frac{1 + i}{1 - i}\right)^9, c = -a, d = \frac{-3b}{ia^2}, e = \sin(x) - i\cos(x) \text{ et } f = \frac{1 - i\tan(x)}{1 + i\tan(x)}$$

Exercice 2 Dans le plan rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) , on considère les points A, B, C et D d'affixes respectives a = -1 + i, b = -1 - i, c = 2i et d = 2 - 2i.

- 1. Faire une figure et placer ces points.
- 2. Calculer $\frac{c-a}{d-a}$ et en déduire la nature du triangle ACD.
- 3. Montrer que les points A, B, C et D sont sur un même cercle dont on précisera le centre et le rayon.

Exercice 3

- 1. On considère le nombre complexe $z_0 = -2 + 2\sqrt{3}i$.
 - (a) Placer l'image M_0 de z_0 dans le plan complexe (on prendra 2cm comme unité).
 - (b) Donner la forme trigonométrique de z_0 .
 - (c) Donner la forme algébrique et la forme trigonométrique du nombre complexe $\frac{1}{z_0}$.
 - (d) Placer sur la figure l'image M'_0 de $\frac{1}{z_0}$.
- 2. On considère maintenant un nombre complexe z=x+iy, avec $x,y\in\mathbb{R}$, dont la partie réelle x est non nulle.
 - (a) Donner la forme algébrique du nombre complexe $\frac{1}{z}$ en fonction de x et de y.
 - (b) Démontrer que z et $\frac{1}{z}$ ont des parties réelles égales si et seulement si |z|=1.
- 3. On considère trois nombres complexes a, b, c tous trois de module égal à 1.
 - (a) Démontrer que $\frac{1}{a} = \overline{a}$.
 - (b) Démontrer que $ab + ac + bc = abc(\overline{a} + \overline{b} + \overline{c})$.
 - (c) En déduire que |ab + ac + bc| = |a + b + c|.

Exercice 4 On considère l'équation $z^2 - 2(\sin t)z + 1 = 0$, où t désigne un nombre réel.

1. Résoudre l'équation dans le cas particulier où $t = \frac{\pi}{4}$.

On donnera les solutions sous forme algébrique et sous forme trigonométrique.

- Résoudre l'équation pour une valeur quelconque générale de t.
 On donnera là aussi les solutions sous forme algébrique et sous forme trigonométrique.
- 3. Résoudre l'équation $z^4 2(\sin t)z^2 + 1 = 0$

Exercice 5 On cherche à résoudre dans \mathbb{C} l'équation $z^3 = \overline{z}$ (E)

- 1. Résoudre dans \mathbb{R} l'équation : $\cos(4\theta) = 1$.
- 2. Résoudre dans \mathbb{R} l'équation : $x^3 = x$.
- 3. On considère une solution $\alpha \in \mathbb{C}$ de l'équation (E). Montrer que le module de α est nécessairement égal à 0 ou à 1.
- 4. En déduire toutes les solutions de (E) et représenter leurs images dans le plan complexe, en prenant comme unité 2 cm.

Exercice 6 Posons
$$A = \sum_{k=1}^{4} \cos^2 \left(\frac{k\pi}{9}\right)$$
 et $B = \sum_{k=1}^{4} \sin^2 \left(\frac{k\pi}{9}\right)$.

- 1. Calculer A + B.
- 2. Linéariser A-B puis calculer sa valeur numérique.
- 3. En déduire les valeurs exactes de A et B.

Exercice 7 Soit a un nombre complexe de module |a| < 1.

1. Démontrer que, pour tout nombre complexe z tel que $1 - \bar{a}z \neq 0$,

$$1 - \left| \frac{z - a}{1 - \bar{a}z} \right|^2 = \frac{\left(1 - |a|^2\right)\left(1 - |z|^2\right)}{|1 - \bar{a}z|^2}$$

2. Déterminer tous les nombres complexes z vérifiant $\left|\frac{z-a}{1-\bar{a}z}\right| \leq 1$.

Exercice 8

- 1. Soient $\theta \in \mathbb{R}$ et $k \in \mathbb{N}$. Linéariser $\cos^2(k\theta)$.
- 2. Soient $\theta \in \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}\$ et $n \in \mathbb{N}^*$.
 - (a) Écrire $S_n = \sum_{k=0}^n e^{2ik\theta}$ sous la forme $\lambda e^{i\alpha}$, où $\lambda, \alpha \in \mathbb{R}$.
 - (b) Montrer que $\sum_{k=0}^{n} \cos^2(k\theta) = \frac{n+1}{2} + \frac{\sin((n+1)\theta)\cos(n\theta)}{2\sin(\theta)}$
- 3. Déduire de ce qui précède que

$$1 + \cos^2\left(\frac{\pi}{9}\right) + \cos^2\left(\frac{2\pi}{9}\right) + \cos^2\left(\frac{3\pi}{9}\right) + \cos^2\left(\frac{4\pi}{9}\right) = \frac{11}{4}$$

Exercice 9

Le plan est muni d'un repère orthonormé direct.

Pour
$$z \in \mathbb{C} \setminus \{2 - i\}$$
, on pose $f(z) = \frac{z - 4 + 3i}{z - 2 + i}$

- 1. Écrire f(2-5i) sous forme algébrique puis sous forme exponentielle.
- 2. Soit $\omega \in \mathbb{C}$ fixé.

Déterminer, suivant les valeurs de ω , le nombre de solution(s) de l'équation $f(z) = \omega$.

- 3. Résoudre l'équation f(z) = z. Interpréter géométriquement le résultat.
- 4. Déterminer l'ensemble E des points M d'affixe z tels que |f(z)| = 1.
- 5. Déterminer l'ensemble F des points M d'affixe z tels que $f(z) \in \mathbb{R}$.

3 Bijections

Exercice 1 Soit f l'application de \mathbb{R} dans \mathbb{R} définie par $f(x) = \frac{e^x - 1}{e^x + 1}$

- 1. Déterminer l'image J de \mathbb{R} par f.
- 2. Montrer que f est bijective de \mathbb{R} dans J et expliciter son application réciproque.

Exercice 2 Montrer que l'application de \mathbb{C} dans lui-même définie par $f(z) = z + 2\bar{z}$ est bijective, et expliciter son application réciproque, également sous la forme $z \mapsto \alpha z + \beta \bar{z}$, avec $\alpha, \beta \in \mathbb{R}$.

Exercice 3 Montrer que l'application f définie de $\mathbb{C} \setminus \{i\}$ dans $\mathbb{C} \setminus \{1\}$ par $f(z) = \frac{z+i}{z-i}$ est bijective et déterminer sa réciproque.

Exercice 4 Soient les fonctions $h: x \mapsto \arcsin\left(\frac{x}{\sqrt{1+x^2}}\right)$ et $u: x \mapsto \frac{x}{\sqrt{1+x^2}}$.

- 1. Montrer que u est définie et dérivable sur \mathbb{R} et que $\forall x \in \mathbb{R}, \ u'(x) = \frac{1}{(1+x^2)^{\frac{3}{2}}}$.
- 2. Montrer que la fonction h est définie et dérivable sur \mathbb{R} et calculer h'(x).
- 3. Déduire de ce qui précède que, $\forall x \in \mathbb{R}, \ h(x) = \arctan(x)$.

Exercice 5 On considère la fonction f définie sur \mathbb{R} par $f(x) = 3^{2x} - 3^{x+1} + 2$.

- 1. Étudier les limites de f en $+\infty$ et en $-\infty$.
- 2. Montrer que f est dérivable sur \mathbb{R} et que $\forall x \in \mathbb{R}$, $f'(x) = 2\ln(3)3^x \left(3^x \frac{3}{2}\right)$.
- 3. Étudier les variations de f et dresser son tableau de variation.

- 4. Résoudre dans \mathbb{R} l'équation f(x) = 0 et dresser le tableau de signe de la fonction f.
- 5. Montrer que f réalise une bijection de l'intervalle $I = \left\lceil \frac{\ln(3/2)}{\ln(3)}, +\infty \right\rceil$ dans l'intervalle $J = \left| -\frac{1}{4}, +\infty \right|$
- 6. Expliciter la bijection réciproque de $f_{|I}:I\longrightarrow J$ (restriction de f à I).

Sommes et produits 4

Exercice 1 Soit $n \in \mathbb{N}^*$. Calculer les sommes et produits suivants

$$1. \sum_{k=1}^{100} 2^{-k}$$

3.
$$\sum_{k=1}^{n} z^{2k+1} \ (z \in \mathbb{C})$$
4.
$$\prod_{k=1}^{n} 2^{2k-1}$$
5.
$$= \prod_{k=1}^{n} 2^{k^2}$$

$$5. = \prod_{k=1}^{n} 2^{k^2}$$

$$2. \sum_{k=0}^{n} \frac{3^k}{2^{2k-1}}$$

4.
$$\prod_{k=1}^{n} 2^{2k-1}$$

Exercice 2 Exprimer avec des factorielles :

$$1. \prod_{k=1}^{n-1} \frac{k}{n-k}$$

1.
$$\prod_{k=1}^{n-1} \frac{k}{n-k}$$
 2.
$$\prod_{k=1}^{n} k(k+1)(k+2)$$
 3.
$$\prod_{k=1}^{n} (n+k)$$
 4.
$$\prod_{k=1}^{n} \frac{2k}{2k-1}$$

$$4. \prod_{k=1}^{n} \frac{2k}{2k-1}$$

Exercice 3 Soit $z \in \mathbb{C}$ et $n \in \mathbb{N}^*$. On pose $S_n = \sum_{i=1}^n k z^{k-1}$.

- 1. Justifier que $S_n = \sum_{k=0}^{n-1} (k+1) z^k$.
- 2. En déduire une expression simplifiée de $zS_n S_n$, puis de S_n .

Exercice 4 Soit $t \in \mathbb{R}$.

- 1. Exprimer $\sin^6 t$ en fonction de $\cos(2kt)$ pour $k \in [0;3]$.
- 2. Exprimer $\cos(6t)$ en fonction de $\cos t$.

Exercice 5

1. Soit
$$n \in \mathbb{N}$$
. Calculer $\sum_{0 \le i, j \le n} \binom{i}{j}$ et $\sum_{0 \le k \le i \le n} \binom{n}{i} \binom{i}{k}$.

2. Soient
$$n \in \mathbb{N}^*$$
 et $x \in \mathbb{C}$. Calculer les produits $\prod_{1 \le i,j \le n} i^j$ et $\prod_{1 \le i,j \le n} x^{i+j}$

5 Ensembles et dénombrement élémentaire

Exercice 1 Soient A, B et C des parties d'un ensemble E telles que :

$$A \cap B = A \cup C$$
 et $A \cup B = A \cap C$

Montrer que A = B = C.

Exercice 2 Soient E un ensemble. Pour A, B deux parties de E on définit

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

Soient A, B deux parties de E.

- 1. Montrer que la réunion définissant $A \triangle B$ est disjointe.
- 2. Montrer que $A \triangle B = (A \cup B) \setminus (A \cap B)$.
- 3. Montrer que $\overline{A} \triangle \overline{B} = A \triangle B$.
- 4. Simplifier $A \triangle E$, $A \triangle \emptyset$, $A \triangle \overline{A}$.
- 5. Résoudre l'équation $A \triangle X = \emptyset$ d'inconnue $X \in \mathscr{P}(E)$.

Exercice 3 Une cantine scolaire fonctionne sous forme de self. Les élèves peuvent choisir entre quatre entrées, trois plats et cinq desserts différents.

- 1. On suppose qu'un élève choisit une entrée, un plat et un dessert. Combien de menus différents peut-on constituer?
- 2. Si un élève ne mange pas de dessert il a le droit, pour compenser, de prendre deux entrées. Combien de possibilités a-t-il pour constituer son menu?
- 3. Deux élèves qui aiment goûter à tout décident de s'organiser ainsi : ils choisissent des entrées, plats et desserts différents et se les partagent ensuite.

Combien ont-ils de menus possibles?

Exercice 4 Dans un petit pays, les numéros de téléphone sont constitués de seulement 6 chiffres. On compose un tel numéro au hasard. Combien y a-t-il de numéros :

- 1. commençant par 01?
- 2. constitués de 6 chiffres distincts?
- 3. contenant deux fois exactement le chiffre 5?
- 4. ne contenant que des chiffres pairs?
- 5. ayant ses six chiffres en ordre strictement croissant?