PTSI1 TD 09

Équations différentielles linéaires

Exercice 1 Résoudre, suivant les valeurs du réel m, l'équation différentielle

$$y'' - (m+1)y' + my = e^x$$

Exercice 2 Résoudre l'équation différentielle $y'' + 2y' + y = \frac{e^{-x}}{1 + x^2}$.

Indication On cherchera une solution particulière de la forme $y_p = zy_0$, où y_0 est une solution non nulle de l'équation homogène.

Exercice 3 Circuit RLC On considère l'équation différentielle (E): $\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + \frac{R}{L} \frac{\mathrm{d}q}{\mathrm{d}t} + \frac{1}{LC}q = \frac{E}{L}$,

où R, L, C et E sont des constantes réelles strictement positives données, t est la variable et q la fonction inconnue.

- 1. Déterminer une condition nécessaire et suffisante sur R, L et C pour que l'équation caractéristique de (E) admette des racines réelles. Montrer que ces racines sont nécessairement négatives.
- 2. Dans cette question, on suppose que $R < 2\sqrt{\frac{L}{C}}$.
 - (a) Montrer que les solution de (E) sont de la forme $q: t \mapsto K + Ae^{-\alpha t}\cos(\omega t) + Be^{-\alpha t}\sin(\omega t)$, où K, α et ω sont des réels à déterminer en fonction de E, R, L et C.
 - (b) Étudier la limite de q lorsque $t \to +\infty$.

Exercice 4 Oscillateur amorti On considère l'équation différentielle

$$(E): y'' + 2ky' + \omega_0^2 y = e^{i\omega t}, \text{ où } (k, \omega_0, \omega) \in (\mathbb{R}_+^*)^3.$$

- 1. Vérifier que (E) possède une solution particulière $\varphi: t \mapsto a e^{i\omega t}$, où $a \in \mathbb{C}$.
- 2. ω et k étant fixés, étudier les variations du module de a en fonction de ω_0 .
- 3. Déterminer les solutions complexes de l'équation différentielle (E).

Exercice 5 Pour $n \in \mathbb{N} \setminus \{0,1\}$, on considère l'équation différentielle (E): (x-1)y'-ny=x.

- 1. Par intégration par parties, déterminer une primitive de $g: x \mapsto \frac{x}{(x-1)^{n+1}}$ sur $]1, +\infty[$.
- 2. En déduire l'ensemble des solutions de (E) sur $]1, +\infty[$.

PTSI1 TD 09

Exercice 6 On considère l'équation différentielle (F): $x^2y'' + 4xy' + (2-x^2)y = e^x$. Pour $x \in \mathbb{R}_+^*$, on pose $z(x) = x^2y(x)$.

- 1. Montrer que y est solution de (F) ssi z est solution de (F'): $z'' z = e^x$.
- 2. Résoudre (F'). En déduire les solutions de (F) sur \mathbb{R}_+^* .

Exercice 7

- 1. Déterminer une primitive sur \mathbb{R} de la fonction $x \mapsto e^{\sin(x)} \sin(x) \cos(x)$ à l'aide du changement de variable $t = \sin(x)$.
- 2. En déduire l'ensemble des solutions de l'équation différentielle $y' + \cos(x)y = \sin(2x)$.

Exercice 8 Soit (E) l'équation différentielle $(1 + \sin^2(x)) y' + \sin(2x) y = \arctan(x)$. On s'intéresse à l'ensemble $S_{(E)}$ de ses solutions $y : \mathbb{R} \to \mathbb{R}$.

- 1. Écrire l'équation homogène (H) associée à (E) puis déterminer son ensemble de solutions $S_{(H)}$.
- 2. Par la méthode de variation de la constante, construire une solution particulière y_p de (E).
- 3. En déduire $S_{(E)}$.

Exercice 9 On considère, pour tout paramètre réel α , l'équation différentielle $(E_{\alpha}): y'' - 2\alpha y' + (1 + \alpha^2) y = \cos(x) - \sin(x)$.

- 1. Écrire son équation homogène (H_{α}) puis résoudre son équation caractéristique associée (K_{α}) .
- 2. En déduire $S_{(H_{\alpha})}^{\mathbb{C}}$ ensemble des solutions de (H_{α}) à valeurs complexes et $S_{(H_{\alpha})}^{\mathbb{R}}$ ensemble des solutions de (H_{α}) à valeurs réelles.
- 3. Soit l'équation différentielle $(E_{\alpha}^{\mathbb{C}}): y'' 2\alpha y' + (1 + \alpha^2) y = e^{ix}$. Trouver, en discutant selon la valeur de $\alpha \in \mathbb{R}$, une solution particulière $y_{p,\alpha}^{\mathbb{C}}$ de $(E_{\alpha}^{\mathbb{C}})$.
- 4. En déduire, pour tout $\alpha \in \mathbb{R}$, une solution particulière $y_{p,\alpha}$ de (E_{α}) puis décrire l'ensemble $S_{(E_{\alpha})}^{\mathbb{C}}$ des solutions de (E_{α}) à valeurs complexes ainsi que l'ensemble $S_{(E_{\alpha})}^{\mathbb{R}}$ des solutions de (E_{α}) à valeurs réelles.