PTSI1 TD 14

Géométrie dans le plan

Le plan est muni d'un repère orthonormé direct (O, \vec{i}, \vec{j})

Exercice 1 Pour quelles valeurs du nombre réel m les vecteurs $\vec{u} \begin{pmatrix} m+3 \\ m+1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -3 \\ m-1 \end{pmatrix}$ constituent-t-ils :

1. une base du plan?

Exercice 3

Déterminer l'angle orienté (\vec{u}, \vec{v}) .

2. une base orthogonale du plan?

Exercice 2 On considère les vecteurs $\vec{u} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -5 \\ -1 \end{pmatrix}$.

Soient \vec{u} et \vec{v} deux vecteurs non nuls.

Démontrer que $||2\vec{u} + 3\vec{v}|| = ||2\vec{u} - 3\vec{v}||$ si et seulement si \vec{u} et \vec{v} sont orthogonaux.

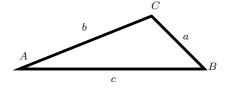
Exercice 4 Soit ABC un triangle quelconque. On note a, b, c les longueurs respectives de BC, AC, AB, S l'aire du triangle ABC et p son demi-périmètre.

- 1. (a) Développer $(\overrightarrow{BA} + \overrightarrow{AC}).(\overrightarrow{BA} + \overrightarrow{AC}).$
 - (b) En déduire que $a^2 = b^2 + c^2 2bc\cos(\widehat{BAC})$.

Formule d'Al Kashi

- 2. (a) Montrer que $[\overrightarrow{AB}, \overrightarrow{AC}]^2 + (\overrightarrow{AB}.\overrightarrow{AC})^2 = b^2c^2$.
 - (b) En déduire que $S^2 = p(p-a)(p-b)(p-c)$.

Formule de Héron



Exercice 5 Soit ABC un triangle quelconque. On note a, b, c les longueurs respectives de BC, AC, AB.

Démontrer que $\frac{a}{\sin(\widehat{BAC})} = \frac{b}{\sin(\widehat{ABC})} = \frac{c}{\sin(\widehat{ACB})}$ Relation des sinus

Exercice 6 On considère un point A, un vecteur \vec{u} non nul du plan, un réel k ainsi que la droite $D = A + \text{Vect}(\vec{u})$.

- 1. Déterminer l'ensemble des points M du plan vérifiant $\vec{u}.\overrightarrow{AM}=k$.
- 2. Déterminer l'ensemble des points M du plan vérifiant $[\vec{u}, \overrightarrow{AM}] = k$.

Exercice 7 Soient A(1;1), B(3;7) et C(-1;3) trois points du plan.

- 1. (a) Déterminer les équations cartésiennes de deux médianes du triangle ABC.
 - (b) Quelles sont les coordonnées du centre de gravité G du triangle ABC?
- 2. (a) Déterminer les équations cartésiennes de deux médiatrices du triangle ABC.
 - (b) Quelles sont les coordonnées du centre Ω du cercle circonscrit au triangle ABC?

PTSI1 TD 14

3. (a) Déterminer les équations cartésiennes de deux hauteurs du triangle ABC.

- (b) Quelles sont les coordonnées de l'orthocentre H du triangle ABC?
- 4. Vérifier que H, G et Ω sont alignés.

Exercice 8 1. Soit D la droite de représentation paramétrique $\begin{cases} x=3-t \\ y=-1+2t \end{cases}, t \in \mathbb{R}$

Donner une équation cartésienne de la droite D.

2. On considère la famille de droites Δ_m d'équations cartésiennes $mx + (m-1)y + 2 = 0, m \in \mathbb{R}$.

Pour quelle(s) valeur(s) du nombre réel $m \Delta_m$ est parallèle à D?

Exercice 9 Soient A(3;1) et D la droite de représentation paramétrique $\begin{cases} x=2t \\ y=1+3t \end{cases}, \quad t \in \mathbb{R}$

- 1. Donner une équation cartésienne de la droite D .
- 2. Déterminer une représentation paramétrique de la droite D' perpendiculaire à D et passant par le point A.
- 3. On note H le projeté orthogonal du point A sur la droite D. Déterminer les coordonnées du point H.
- On note A' le symétrique du point A par rapport à la droite D.
 Déterminer les coordonnées de A'.

Exercice 10 Calculer la distance du point M à la droite D dans les cas suivants :

- 1. M(4,-1) et D a pour équation cartésienne x+2y+3=0.
- 2. M(0,0) et $D = B + Vect(\vec{u})$ avec B (5;3) et \vec{u} $\binom{1}{2}$.
- 3. M(1,-1) et D est la droite passant par B(2;2) et de vecteur normal $\vec{n} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Exercice 11 Soit ABCD un carré de côté 1 . Pour tout réel $\lambda \in]0,1[$, on considère les points P_{λ} sur [AB] et Q_{λ} sur [BC] tels que $BP_{\lambda} = BQ_{\lambda} = \lambda$.

On note H_{λ} le projeté orthogonal de B sur la droite $(P_{\lambda}C)$.

On se place dans le repère orthonormé $\mathcal{R} = (B, \overrightarrow{BC}, \overrightarrow{BA})$.

- 1. Donner les coordonnées des points $B, C, A, D, P_{\lambda}, Q_{\lambda}$ dans le repère \mathcal{R} .
- 2. Déterminer une équation cartésienne de la droite $(P_{\lambda}C)$ puis une équation cartésienne de la droite $(H_{\lambda}B)$
- 3. Calculer les coordonnées de H_{λ} .
- 4. En déduire que les droites $(H_{\lambda}Q_{\lambda})$ et $(H_{\lambda}D)$ sont perpendiculaires pour tout $\lambda \in]0,1[$.