T	J	N	Λ	/		
1	u	.,		/∎	•	

Lundi 27 janvier 2025

$\underset{Sujet\ A}{Test\ n^o\ 11}$

1.	Déterminer la limite en 1 de $x^{\frac{1}{x-1}}$							
2.	La fonction f définie sur \mathbb{R}_+^* par $f(x)=x^2e^{-\frac{1}{x}}$ est-elle prolongeable par continuité en 0?							
	On considère la fonction f définie sur $[-1, +\infty[$ par $f(x) = (x+1)\ln(1+x)$ si $x \neq -1$ et $f(-1) = 0$.							
	Montrer que f est continue sur $[-1, +\infty[$, mais que f n'est pas dérivable en -1 .							

NOM:	Lundi 27 janvier 2025
	3

1.	Déterminer la limite en 1 de $x^{\frac{x}{x-1}}$							
2.	La fonction f définie sur \mathbb{R}_+^* par $f(x)=\frac{x}{1+e^{\frac{1}{x}}}$ est-elle prolongeable par continuité en 0 ?							
	On considère la fonction f définie sur \mathbb{R}_+ par $f(x)=x^2\ln(x)$ si $x\neq 0$ et $f(0)=0$.							
	Montrer que f est de classe \mathscr{C}^1 sur $\mathbb{R}_+,$ mais que f' n'est pas dérivable en 0.							