Espérance, variance et écart-type

 $(\Omega, \mathscr{P}(\Omega), P)$ est un espace probabilisé fini associé à une expérience aléatoire. X désigne une v.a.r. sur Ω d'univers image $X(\Omega) = \{x_1, x_2, \dots, x_n\}$.

1 Espérance mathématique

Définition 1. On appelle espérance de X le nombre réel $E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$

Si E(X) = 0, on dit que la variable aléatoire X est centrée.

Exemple 1. Un jeu consiste à lancer trois fois de suite une pièce de monnaie bien équilibrée.

On gagne 2 euros pour chaque résultat "pile" et on perd 1 euro pour chaque résultat "face".

On note G le gain en euros à l'issue d'une partie. Déterminer l'espérance de G.

Cas particuliers: v.a.r. constantes et indicatrices

- Si $b \in \mathbb{R}$ et si X = b, alors E(X) = b.
- Si $A \in \mathcal{P}(\Omega)$ est un événement et si $X = \mathbf{1}_A$, alors $\mathrm{E}(X) = \mathrm{P}(A)$.

Lemme 1. L'espérance de X vérifie $\mathrm{E}(X) = \sum_{\omega \in \Omega} X(\omega) \mathrm{P}(\{\omega\})$

Propriété 1. Si X et Y sont deux v.a.r. sur Ω , et $(a,b) \in \mathbb{R}^2$ alors

- 1. E(aX + bY) = aE(X) + bE(Y) Linéarité de l'espérance
- 2. si $X \ge 0$ alors $E(X) \ge 0$ Positivité de l'espérance
- 3. si $X \leq Y$ alors $E(X) \leq E(Y)$ Croissance de l'espérance
- 4. $|E(X)| \leq E(|X|)$ Inégalité triangulaire

Remarque : E(X - E(X)) = 0. On dit que Y = X - E(X) est la v.a.r. centrée associée à X.

Théorème 1. Théorème de transfert Si $f: X(\Omega) \to \mathbb{R}$ est une fonction réelle

alors $E(f(X)) = \sum_{i=1}^{n} f(x_i)P(X = x_i).$

Exemple 2. Pour la situation de l'exemple 3, calculer $\sigma = \sqrt{\mathbb{E}\left[(G - \mathbb{E}(G))^2\right]}$. Interpréter.

2 Variance et écart-type

Définition 2. On appelle variance de X le nombre réel $V(X) = \mathbb{E}\left[(X - \mathbb{E}(X))^2\right]$

On appelle écart-type de X le nombre réel $\sigma(X) = \sqrt{V(X)}$

Si E(X) = 0 et $\sigma(X) = 1$, on dit que la variable aléatoire X est centrée réduite.

Propriété 2. 1. $V(X) = E(X^2) - (E(X))^2$ Formule de König-Huygens

2. $\forall (a,b) \in \mathbb{R}^2$, $V(aX+b) = a^2V(X)$

Remarque : La variable aléatoire $Y = \frac{X - \mathrm{E}(X)}{\sigma(X)}$ est la variable centrée réduite associée à X.

Exemple 3. Au jeu de la roulette, les 37 éventualités $\{0;1;2;\ldots;36\}$ sont équiprobables.

Les numéros impairs sont rouges, les numéros pairs sont noirs, sauf le 0 qui est vert. Si on mise 1 euro sur "rouge", on gagne 1 euro si un numéro rouge sort, sinon on perd sa mise. Lorsqu'on mise 1 euro sur un numéro, on gagne 35 euros si le numéro sort, sinon on perd sa mise.

Comparer ces deux façons de jouer (espérance de gain et écart-type).

Propriété 3. Inégalité de Markov Si X est une v.a. réelle positive alors

$$\forall a > 0 \quad P(X \ge a) \le \frac{E(X)}{a}$$

Propriété 4. Inégalité de Bienaymé-Tchebychev

$$\forall \varepsilon > 0 \quad P(|X - E(X)| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^2}.$$

Interprétation: Par passage à l'événement contraire, cela s'écrit aussi

$$\forall \varepsilon > 0, \quad P(|X - E(X)| < \varepsilon) \ge 1 - \frac{V(X)}{\varepsilon^2}.$$

A priori, on peut dire que $X(\omega)$ sera proche de E(X) à ε près avec une probabilité supérieure ou égale à $1-\frac{V(X)}{\varepsilon^2}$. Si, par exemple, $\frac{V(X)}{\varepsilon^2} \leq 0,05$ alors on peut dire que $X(\omega)$ sera dans l'intervalle $[E(X)-\varepsilon,E(X)+\varepsilon]$ avec un risque d'erreur de 5%.

3 Espérance et variance des lois usuelles

3.1 Loi uniforme

Propriété 5. Soit
$$n \in \mathbb{N}^*$$
. Si $X \sim \mathscr{U}(n)$ alors $\mathrm{E}(X) = \frac{n+1}{2}$.

3.2 Loi de Bernoulli

Propriété 6. Soit
$$p \in [0,1]$$
. Si $X \sim \mathcal{B}(p)$ alors $E(X) = p$ et $V(X) = p(1-p)$.

3.3 Loi Binomiale

Propriété 7. Soit
$$p \in [0,1]$$
, et $n \in \mathbb{N}^*$. Si $X \hookrightarrow \mathscr{B}(n,p)$ alors $\mathrm{E}(X) = np$ et $V(X) = np(1-p)$.

Exemple 4. On effectue n lancers d'un dé à six faces bien équilibré. Soit $\varepsilon > 0$.

À l'aide de l'inégalité de Bienaymé-Tchebychev, montrer que pour n assez grand, la proportion de 6 est proche de $\frac{1}{6}$ à ε près avec une probabilité supérieure à 0,9.

4 Covariance

Définition 3. On appelle **covariance** de deux v.a.r X et Y, et on note Cov(X, Y), le nombre E[(X - E(X))(Y - E(Y))].

Lorsque cette covariance est nulle, on dit que les deux v.a.r sont décorellées.

Théorème 2. Pour toutes v.a.r X et Y, Cov(X,Y) = E(XY) - E(X)E(Y) et V(X+Y) = V(X) + V(Y) + 2Cov(X,Y).

Propriété 8. Si X et Y sont des v.a.r. indépendantes alors

1.
$$E(XY) = E(X)E(Y)$$

2.
$$Cov(X, Y) = 0$$

3.
$$V(X + Y) = V(X) + V(Y)$$
.

Remarque : La réciproque de la propriété précédente est fausse.

Exemple 5. Soit $X \sim \mathcal{U}(\llbracket -1,1 \rrbracket)$ et Y l'indicatrice de l'événement (X=0).

Montrer que E(XY) = E(X)E(Y) mais que X et Y ne sont pas indépendantes.

Application : Soient n v.a.r X_i indépendantes, de même loi d'espérance m et d'écart type $\sigma.$

La v.a.r
$$M = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 a pour espérance m et pour écart type $\frac{\sigma}{\sqrt{n}}$.

D' après l'inégalité de Bienaymé-Tchebychev,
$$\forall a>0,\ P(|M-m|\geq a)\leq \frac{\sigma^2}{na^2}$$

Interprétation fréquentiste : si X_1, \ldots, X_n sont les valeurs prises par une v.a.r X lors de n répétitions indépendantes d'une expérience, alors la probabilité que la moyenne observée des valeurs prises par X s'écarte de la moyenne théorique de plus d'un écart donné a > 0 tend vers 0 lorsque le nombre n de répétitions tend vers l'infini.

Application : On retrouve ainsi facilement l'espérance d'une v.a.r. X de loi $\mathcal{B}(n,p)$.