Devoir maison nº 20

A rendre le lundi 2 juin 2025

Exercice 1 Pour tout réel a > 0, notons Δ_a l'application définie dans $\mathbb{R}[X]$ par

$$\Delta_a(P)(X) = \frac{P(X+a) - P(X-a)}{2a}$$

0. Montrer que la limite de $\Delta_a(P)(X)$ lorsque a tend vers 0 est P'(X).

A - Étude globale

- 1. Montrer que Δ_a est un endomorphisme de $\mathbb{R}[X]$.
- 2. Évaluer, pour tout entier $n \in \mathbb{N}$, le degré et le coefficient dominant de $\Delta_a(X^n)$.
- 3. En déduire Ker (Δ_a) le noyau de Δ_a ainsi que son image Im (Δ_a) .
- B On note Δ_a^4 la restriction de Δ_a à $\mathbb{R}_4[X]$.
 - 1. Écrire la matrice représentative M_a de Δ_a^4 dans la base canonique \mathcal{B}_4 de $\mathbb{R}_4[X]$.
 - 2. Quel est son noyau? Est-ce un automorphisme?
 - 3. Donner le rang de Δ_a^4 et expliciter son image.
- C Soit E le sous-ensemble de $\mathbb{R}_4[X]$ des polynômes s'annulant en 0.

On note Δ_a^* la restriction de Δ_a à E.

- 1. Montrer que E est un sous-espace vectoriel de $\mathbb{R}_4[X]$ admettant $\mathcal{B}_4^* = (X, X^2, X^3, X^4)$ comme base.
- 2. Démontrer que $\Delta_a^*: E \longrightarrow \mathbb{R}_3[X]$ est un isomorphisme.
- 3. Écrire puis inverser la matrice M_a^* de Δ_a^* dans le couple de bases $(\mathcal{B}_4^*, \mathcal{B}_3)$ où \mathcal{B}_3 est la base canonique de $\mathbb{R}_3[X]$.
- D On pose $a = \frac{1}{2}$
 - 1. Évaluer par télescopage la somme $\sum_{k=1}^{n} P\left(k + \frac{1}{2}\right) P\left(k \frac{1}{2}\right)$.
 - 2. Soit $Q \in \mathbb{R}_3[X]$. En introduisant un antécédent P de Q par $\Delta_{0.5}$, simplifier, à l'aide de la question précédente, la somme $\sum_{k=1}^{n} Q(k)$.
 - 3. Retrouver ainsi la formule donnant $\sum_{k=1}^{n} k^2$.

Exercice 2

1. On considère la fonction h définie sur l'intervalle $I =]0; +\infty[$ par

$$h(t) = \left(t + \frac{1}{2}\right) \ln\left(1 + \frac{1}{t}\right)$$

- (a) Justifier que la fonction h est de classe c^2 sur l'intervalle I.
- (b) Étudier le prolongement par continuité de h en 0.
- (c) Déterminer les dérivées premières et secondes h' et h'' de h.
- (d) Étudier les limites en $+\infty$ des fonctions h et h'.
- (e) Montrer que $\forall t \in I$, $h'(t) \leq 0$.
- (f) En déduire que $\forall t \in I, \quad h(t) \ge 1.$
- (g) Montrer que $h(t) 1 \sim \frac{1}{t \to +\infty} \frac{1}{12t^2}$.
- 2. On considère à présent la suite (u_n) définie pour tout entier naturel $n \ge 1$ par

$$u_n = \frac{n! \, \mathrm{e}^n}{n^n \sqrt{n}}$$

- (a) Montrer que pour tout $n \in \mathbb{N}^*$, $\ln\left(\frac{u_n}{u_{n+1}}\right) = h(n) 1$, où h est la fonction étudiée à la question 1.
- (b) En déduire la convergence de la série de terme général $v_n = \ln\left(\frac{u_n}{u_{n+1}}\right)$
- (c) Après avoir établi que pour $n \ge 1$, $\sum_{k=1}^{n} v_k = 1 \ln(u_{n+1})$, montrer que la suite (u_n) converge vers une limite strictement positive C.
- (d) En déduire un équivalent, lorsque $n \to +\infty$, de n! en fonction de puissances de n, de l'exponentielle et de C.
- (e) On admet la formule $(F): \sqrt{\pi} \underset{n \to +\infty}{\sim} \frac{4^n (n!)^2}{(2n)! \sqrt{n}}$ Á l'aide de cette formule, calculer C en fonction de π .
- (f) En déduire la formule de Stirling : $n! \underset{n \to +\infty}{\sim} \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$