NOM:.....

Lundi 3 novembre 2025

Test nº 6

Sujet A

- 1. Compléter :
 - (a) Soient $f: E \to F$ et $A \in \mathcal{P}(E)$. $f(A) = {\cdots \cdots }$.
 - (b) La fonction arccos est dérivable sur \cdots , et $\arccos'(x) = \cdots$
 - (c) $\arcsin\left(\cos\left(\frac{5\pi}{4}\right)\right) = \cdots$
 - (d) $\arcsin\left(\sin\left(\frac{5\pi}{4}\right)\right) = \cdots$ (e) $\arctan\left(\tan\left(\frac{5\pi}{4}\right)\right) = \cdots$
- 2. Soit la fonction $f: x \longmapsto \arccos(x) + \arcsin(x)$
 - (a) Donner les ensembles de définition D_f et de dérivabilité $D_{f'}$ de la fonction f puis calculer sa dérivée.

- (b) En déduire une expression plus simple de f(x) sur D_f .
- 3. On considère l'application $f: \begin{bmatrix} \mathbb{N} & \longrightarrow \mathbb{N} \\ n & \longmapsto n^2 \end{bmatrix}$

f est-elle injective, surjective, bijective de \mathbb{N} dans \mathbb{N} ?

NOM:.....

Lundi 3 novembre 2025

Test nº 6

Sujet B

1. Compléter :

- (a) Soient $f: E \to F$ et $B \in \mathscr{P}(F)$. $f^{-1}(B) = {\cdots \cdots }$.
- (b) La fonction arcsin est dérivable sur \cdots , et $\arcsin'(x) = \cdots$
- (c) $\operatorname{arccos}\left(\cos\left(-\frac{2\pi}{3}\right)\right) = \cdots$
- (d) $\arcsin\left(\sin\left(-\frac{2\pi}{3}\right)\right) = \cdots$ (e) $\arctan\left(\tan\left(-\frac{2\pi}{3}\right)\right) = \cdots$
- 2. Soit la fonction $f: x \longmapsto \arcsin(x) + \arccos(x)$
 - (a) Donner les ensembles de définition D_f et de dérivabilité $D_{f'}$ de la fonction f puis calculer sa dérivée.

- (b) En déduire une expression plus simple de f(x) sur D_f .
- 3. On considère l'application $f: \begin{bmatrix} \mathbb{N} & \longrightarrow \mathbb{N} \\ n & \longmapsto 3n \end{bmatrix}$

f est-elle injective, surjective, bijective de \mathbb{N} dans \mathbb{N} ?