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Correction du concours blanc no 1

Partie 2

Exercice 1 Soit f : C∗ −→ C dé�nie par f(z) = z +
1

z

1. f(−i) = −i− 1

i
= −i + i = 0

f(1 + i) = 1 + i +
1

1 + i
= 1 + i +

1− i

2
=

3 + i

2

f
(
e

2iπ
3

)
= e

2iπ
3 + e−

2iπ
3 = 2 cos

(
2iπ

3

)
= −1

2. f(z) = i ⇔ z +
1

z
= i ⇔ z2 − iz + 1 = 0

∆ = i2 − 4 = −5 z1 =
i + i

√
5

2
z2 =

i− i
√
5

2

Les antécédents de i par l'application f sont
i(1 +

√
5)

2
et

i(1−
√
5)

2

3. L'application f n' est pas injective car i a deux antécédents par f d'après la question

précédente.

f(z) = a ⇔ z2 − az + 1 = 0 qui est une équation de degré 2 dans C donc a au moins une

solution dans C. De plus 0 n'est pas solution de cette équation donc

l'application f est surjective.

4. f(z) = z +
z

|z|2
=

z|z|2 + z

|z|2
=

x(x2 + y2 + 1) + iy(x2 + y2 − 1)

x2 + y2

Re (f(z)) =
x(x2 + y2 + 1)

x2 + y2
et Im (f(z)) =

y(x2 + y2 − 1)

x2 + y2

5. f(z) ∈ iR ⇔ Re (f(z)) = 0 ⇔ x(x2 + y2 + 1) = 0 ⇔ x = 0 car

x2 + y2 + 1 ̸= 0 ∀x, y ∈ R.

L'image réciproque de l'axe imaginaire est lui même, privé de l'origine : f(z) ∈ iR ⇔ z ∈ iR∗

f(z) ∈ R ⇔ y(x2 + y2 − 1) = 0 ⇔ y = 0 ou x2 + y2 = 1

L'image réciproque de l'axe réel est l'union de l'axe réel privé de l'origine et du cercle trigonométrique

f(z) ∈ R ⇔ z ∈ R∗ ∪ U

6. On dé�nit désormais une suite de fonctions gn sur C en posant

g0(z) = 2, g1(z) = z et ∀n ∈ N, gn+2(z) = zgn+1(z)− gn(z).

(a) g2(z) = z2 − 2, g3(z) = z3 − 3z, g4(z) = z(z3 − 3z)− (z2 − 2) = z4 − 4z2 + 2.

(b) g2(z) = 0 ⇔ z = ±
√
2, g3(z) = 0 ⇔ z = 0 ou z = ±

√
3

En posant Z = z2 g4(z) = 0 ⇔ Z2 − 4Z + 2 = 0 ∆ = 8 Z = 2±
√
2 > 0 ⇔

z = ±
√
2 +

√
2 ou z = ±

√
2−

√
2
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(c) Montrons que, ∀n ∈ N,∀z ∈ C, gn(f(z)) = f(zn) par récurrence double :

g0(f(z)) = 2 et f(z0) = 2 g1(f(z)) = f(z).

Supposons que gn(f(z)) = f(zn) et gn+1(f(z)) = f(zn+1) à un rang n on a alors

gn+2(f(z)) = f(z)gn+1(f(z))− gn(f(z)) = f(z)f(zn+1)− f(zn)

gn+2(f(z)) =

(
z +

1

z

)(
zn+1 +

1

zn+1

)
− zn− 1

zn
= zn+2+

1

zn
+ zn+

1

zn+2
− zn− 1

zn

gn+2(f(z)) = zn+2 +
1

zn+2
= f(zn+2)

On a montré par récurrence que ∀n ∈ N, ∀z ∈ C, gn(f(z)) = f(zn)

(d) f(zn) = 0 ⇔ z2n = −1 ⇔ zk = e
i(π+2kπ)

2n , k ∈
[[
0, 2n− 1

]]
f(zn) = 0 ⇒ gn(f(z)) = 0 d'après la question précédente donc les

f(zk) = e
i(π+2kπ)

2n + e−
i(π+2kπ)

2n = 2 cos

(
π + 2kπ

2n

)
sont solutions de l'équation

gn(z) = 0.

Ces racines sont distinctes pour k ∈
[[
0, n− 1

]]
puisque

π + 2kπ

2n
∈ [0, π] et on

démontre par récurrence double que gn(z) est un polynôme de degré n.

Ces n racines distinctes sont donc les solutions de l'équation gn(z) = 0.

Remarque Ces racines sont réelles ce qui est cohérent avec les résultats de la

question 6. (a)

(e) un = gn

(
5

2

)
. En utilisant la dé�nition par récurrence des fonctions gn on obtient

un+2 =
5

2
un+1 − un avec u0 = 2 et u1 =

5

2
.

La suite (un) est alors une suite linéaire récurrente d'ordre 2, d'équation

caractéristique 2r2 − 5r + 2 = 0 qui a pour racines 2 et
1

2

un = A2n +
B

2n
avec u0 = A+B = 2 et u1 = 2A+

B

2
=

5

2
d'où A = B = 1 et

un = 2n +
1

2n

On remarque que un = f(2n) et on a f(2) =
5

2
donc

on retrouve la formule de la question 6. (c) dans le cas particulier où z = 2.

Exercice 2

Partie A

1. (a) M2 =


4 0 0

0 0 2

0 −2 0

.

(b) On calcule M3 =


−8 0 0

0 −2 2

0 −2 −2

. En regardant les coe�cients non diagonaux, on
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remarque que


−8 0 0

0 −2 2

0 −2 −2

 = 2


−2 0 0

0 1 1

0 −1 1

−


4 0 0

0 4 0

0 0 4

. Ainsi, on a

M3 = 2M − 4I3. (1)

(c) On a M3 = 2M − 4I3 qui se réécrit sous la forme

2M −M3 = 4I3 ⇔
1

4
(2I3 −M2)M = M × 1

4
(2I3 −M2) = I3.

Par conséquent, la matrice M est inversible et on a M−1 =
1

4
(2I3 −M2).

Remarque L'énoncé demande de déduire l'inversibilité de M de la question

précédente et ne demande pas les coe�cients de la matrice inverse donc la méthode

de Gauss Jordan n'est pas adaptée à la réponse mais j'ai quand même mis 0.5/0.75 à

ceux qui l'ont bien appliquée.

2. Soit A =


a 0 0

0 b c

0 −c b

 ∈ A.

(a) Analyse : On suppose qu'il existe trois réels λ0, λ1, λ2 tels que

A = λ0I3 + λ1M + λ2M
2. On a

A = λ0I3 + λ1M + λ2M
2 ⇔ A = λ0


1 0 0

0 1 0

0 0 1

+ λ1


−2 0 0

0 1 1

0 −1 1

+ λ2


4 0 0

0 0 2

0 −2 0



⇔


a 0 0

0 b c

0 −c b

 =


λ0 − 2λ1 + 4λ2 0 0

0 λ0 + λ1 λ1 + 2λ2

0 −(λ1 + 2λ2) λ0 + λ1



⇔


λ0 − 2λ1 + 4λ2 = a

λ0 + λ1 = b

λ1 + 2λ2 = c

.

En posant X =


λ0

λ1

λ2

 et Y =


a

b

c

, ce système (S) se réécrit sous la forme

BX = Y avec B =


1 −2 4

1 1 0

0 1 2


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
λ0 − 2λ1 + 4λ2 = a

λ0 + λ1 = b

λ1 + 2λ2 = c

⇔


b− λ1 − 2λ1 + 2(c− λ1) = a

λ0 = b− λ1

2λ2 = c− λ1

⇔


λ0 =

1

5
(a+ 4b− 2c)

λ1 =
1

5
(−a+ b+ 2c)

λ2 =
1

10
(a− b+ 3c)

.

(b) Synthèse : On pose λ0 =
1

5
(a+ 4b− 2c), λ1 =

1

5
(−a+ b+ 2c) et λ2 =

1

10
(a− b+ 3c).

On calcule

λ0I3 + λ1M + λ2M
2 =


λ0 − 2λ1 + 4λ2 0 0

0 λ0 + λ1 λ1 + 2λ2

0 −(λ1 + 2λ2) λ0 + λ1

 .

Or, avec les valeurs de λ0, λ1 et λ2 choisies, il vient
λ0 − 2λ1 + 4λ2 =

a+ 4b− 2c

5
− 2(−a+ b+ 2c)

5
+

2(a− b+ 3c)

5
= a

λ0 + λ1 =
a+ 4b− 2c

5
+

−a+ b+ 2c

5
= b

λ1 + 2λ2 =
−a+ b+ 2c

5
+

a− b+ 3c

5
= c

.

Ainsi, on obtient λ0I3 + λ1M + λ2M
2 =


a 0 0

0 b c

0 −c b

 = A. Par conséquent la

matrice A se décompose sous la forme A = λ0I3 + λ1M + λ2M
2 avec λ0, λ1, λ2 réels.

L'analyse garantit l'unicité de cette décomposition.

(c) Le résultat de la question 2.(a) se réinterprète sous la forme : Pour tout

Y ∈ M3,1(R), il existe un unique X ∈ M3,1(R) tel que


1 −2 4

1 1 0

0 1 2

X = Y. Par

conséquent, la matrice


1 −2 4

1 1 0

0 1 2

 est inversible.

De plus, la résolution du système (S) réalisée lors de la question 2.(a)donne
λ0 =

1

5
(a+ 4b− 2c)

λ1 =
1

5
(−a+ b+ 2c)

λ2 =
1

10
(a− b+ 3c)

qui se réécrit sous la forme X =
1

10


2 8 −4

−2 2 4

1 −1 3

Y . La méthode d'inversion
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d'une matrice par résolution d'un système linéaire donne immédiatement
1 −2 4

1 1 0

0 1 2


−1

=
1

10


2 8 −4

−2 2 4

1 −1 3

 .

Partie 2 Puissances de M

1. Soient A =


a 0 0

0 b c

0 −c b

 et A′ =


a′ 0 0

0 b′ c′

0 −c′ b′

 deux matrices dans A. On calcule

AA′ =


a 0 0

0 b c

0 −c b




a′ 0 0

0 b′ c′

0 −c′ b′

 =


aa′ 0 0

0 bb′ − cc′ bc′ + cb′

0 −(bc′ + cb′) bb′ − cc′


donc AA′ ∈ A.

2. Soit n ∈ N. La matrice M appartient à A et on montre que la matrice

Mn = M × · · · ×M︸ ︷︷ ︸
n fois

appartient à A par récurrence en utilisant Mn+1 = M ×Mn. Étant

donnée la forme des matrices de A, il existe des réels an, bn et cn tels que

Mn =


an 0 0

0 bn cn

0 −cn bn

 .

Remarque Cette récurrence est triviale, on n'était pas obligé de la rédiger, mais le mot

"récurrence" doit apparaître dans la rédaction.

3. (a) On a M0 = I3 =


1 0 0

0 1 0

0 0 1

 donc a0 = 1, b0 = 1 et c0 = 0. On a

M1 = M =


−2 0 0

0 1 1

0 −1 1

 donc a1 = −2, b1 = 1 et c1 = 1.

(b) Pour tout entier n ∈ N, on a
an+1 0 0

0 bn+1 cn+1

0 −cn+1 bn+1

 = Mn+1 = MMn =


−2 0 0

0 1 1

0 −1 1




an 0 0

0 bn cn

0 −cn bn



=


−2an 0 0

0 bn − cn bn + cn

0 −(bn + cn) bn − cn

 .
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Par conséquent, pour tout n ∈ N, on a

an+1 = −2an et

bn+1 = bn − cn

cn+1 = bn + cn

.

4. La suite (an)n∈N véri�e a0 = 1 et la relation, pour tout n ∈ N, an+1 = −2an. La suite

(an)n∈N est une suite géométrique de raison −2. Il s'ensuit

∀n ∈ N, an = a0(−2)n = (−2)n.

5. Soit n ∈ N. On a

zn+1 = bn+1+ icn+1 = bn− cn+ i(bn+ cn) = bn+ icn+ i(bn+ icn) = zn+ izn = (1+ i)zn.

La suite (zn)n∈N est une suite géométrique de raison 1 + i avec z0 = b0 + ic0 = 1. Il

s'ensuit

∀n ∈ N, zn = (1 + i)n.

Pour conclure, bn étant par construction la partie réelle du complexe zn, il vient

∀n ∈ N, bn = Re ((1 + i)n) .

en écrivant 1 + i =
√
2ei

π
4 , il vient

Re ((1 + i)n) = Re
(
(
√
2ei

π
4 )n

)
= Re

(
(
√
2)n

(
ei

π
4

)n)
= Re

(
(
√
2)nein

π
4

)
= (

√
2)n cos

(
n
π

4

)
.
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