PTSI Mercredi 7 janvier 2026

Correction du concours blanc n° 1
Partie 2

1
Exercice 1  Soit f: C* — C définie par f(z) =z + —
z

1 1—1 |3+i
1 1 :1 1 7:1 1 —_—
f(+1) tit g =1+it— 5

im i im 2
/ (eZT> =% —I—e’QT = 2cos <;T> :

1
2. fr)=iez2+-=ie22-iz+1=0
z

i+iv5 i—iv5
2 277

A=i2—4=-5 z =

i(1++/5) ot i(1—+/5)
2 2

Les antécédents de i par I’application f sont

3. ’L’application f 1’ est pas injective‘ car i a deux antécédents par f d’aprés la question

précédente.
f(z) =a< 2?2 —az+1 =0 qui est une équation de degré 2 dans C donc a au moins une

solution dans C. De plus 0 n’est pas solution de cette équation donc

I’application f est surjective.‘

- 2 | = 2 2 s 002 2

Z zlz|*+7Z r(zc+y*+1)+iy(x +y° —1
4 f(z) =2 ~ HQ ( Y )2 ?JQ( Y )

|2| 2| e +y

22 +y? -1
et I (/(2)) = W2

:U(:r2 + %+ 1)

Re (£(2) = " 50

5. f(z) €eiR& Re (f(2)) =0 z(2®*+4y*+1)=0& 2 =0 car
2?4+ +1#0 Vo,ycR.

’L’image réciproque de I'axe imaginaire est lui méme, privé de l'origine : f(z) € iR & z € iR*

fR)eERey@?+y?-1)=0<y=00uz®+y’>=1

’L’image réciproque de ’axe réel est 'union de ’axe réel privé de l'origine et du cercle trigonométrique

| f(z) ER &z e R*UT]

6. On définit désormais une suite de fonctions g, sur C en posant

90(2) = 2,91(2) = z et ¥n € N, gny2(2) = 2gn+1(2) — gn(2).

(a) go(2) =22 =2, g3(2) = 23 — 32, gu(2) = 2(2% — 32) — (22 - 2) = 2% — 422 + 2.
(b) g2(2) =0 2 =4v2,93(2) =0 2=00u z = +V/3
En posant Z =22 g4(2) =0 22 -42+2=0 A=8 Z=2+/2>0%

‘z::lz 2—|—\/§0uz::|:\/2—ﬁ‘
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Montrons que, Yn € N,Vz € C, g,(f(2)) = f(2") par récurrence double :
g0(f(2)) =2et f(2°) =2 q1(f(2)) = f(2).
(f

Supposons que g,(f(2)) = f(2") et gni1(f(2)) = f(2""1) & un rang n on a alors
gn+2(f(2)) = [(2)gn1(F(2)) — gn(f(2)) = f(2) f(2"T1) = f(2")
Int2(f(2)) = <z + i) (z”“ + z”1+1> — 2" — in = "2 4 zi” + 2"+ z”1+2 — 2" — L

z

gusa(f(2)) = 72 + g = F()

On a montré par récurrence que ’Vn e N,Vz € C,g,(f(2) = f(z") ‘

fizm = = —1<:>Zk:ei(wgikﬂ),k‘6 [0,2n —1]

fz")=0= gn( f(2)) = 0 d’apres la question précédente donc les

flzr) = I(H%ﬂ + e*i(ﬁ;im) = 2cos <7T+T2llm> sont solutions de ’équation
gn(z) = 0.

m+ 2km
Ces racines sont distinctes pour k € [[0, n— 1]] puisque 27 € [0, 7] et on
n

démontre par récurrence double que g, (2) est un polynéme de degré n.

’ Ces n racines distinctes sont donc les solutions de I’équation g,(z) = 0. ‘

Remarque Ces racines sont réelles ce qui est cohérent avec les résultats de la

question 6. (a)

5 . .. . .
Uy = gn <2> . En utilisant la définition par récurrence des fonctions g, on obtient
Up+2 = §Un+1 — Up avec ug = 2 et u; = —

La suite (uy,) est alors une suite linéaire récurrente d’ordre 2, d’équation

caractéristique 2r2 — 5r 4+ 2 = 0 qui a pour racines 2 et 3

B B 5
un:A2”+2—navecu0:A+B:2etu1:2A+5:§d’oﬂA:leet
1

)
On remarque que u, = f(2") et on a f(2) = B donc

on retrouve la formule de la question 6. (c) dans le cas particulier ot z = 2.

Exercice 2

1.(a) M? =

(b)

Partie A
4 0 0
0 0 2
0 -2 0
0 O
On calcule M? = ( —2 2 |. En regardant les coefficients non diagonaux, on
-2 =2
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-8 0 0 -2 0 0 4 0 0

remarque que 0o -2 2 =2 0 1 1 |—1 0 4 0 |.Ainsi,ona
—2 -2 0 -1 1 00 4

M3 =2M — 4. (1)

(c) On a M3 =2M — 413 qui se réécrit sous la forme

2M — M3 =413 & - (213 — M*)M = M x 4(213 — M?) =1I.

Par conséquent, la matrice M est inversible et on a M1 = 1(2[3 — M?).
Remarque L’énoncé demande de déduire l'inversibilité de M de la question
précédente et ne demande pas les coefficients de la matrice inverse donc la méthode
de Gauss Jordan n’est pas adaptée a la réponse mais j’ai quand méme mis 0.5/0.75 a

ceux qui 'ont bien appliquée.

a 0 O
2. Soit A = 0 b c e A
0 —c¢ b

(a) Analyse : On suppose qu’il existe trois réels A\g, A\1, A2 tels que
A= Xls+ MM+ )\2M2. On a

100 -2 0 0 4 0 0
A= I3+ MM +XM?* & A=X| 0 1 0 |+XM] 0 1 1 |[+X
0 0 1 -1 1 -2 0
a )\0—2)\1+4)\2 0 0
<1 0 Ao+ A A1+ 2X 2
0 —c b —(A142X) Ao+ N\

Ao — 2\ +4X =a
{4 X+A1=b

A +2X\ =¢
En posant X = ) et Y = , ce systéme (S) se réécrit sous la forme
1 -2 4
BX=YavecB=1]1 1
0 1 2
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1
A —2M +4X=a b—XA =2\ +2(c—\)=a Mo = —(a+4b—2c¢)
AN+ =D <3 A =b—X\ = )\1:5(—&+b+26)
1
A +2X o =c 2 o = c— )\ Agzl—o(a—b—FSc)

1 1 1
(b) Synthése : On pose A\g = 5(a+4b— 2¢), A\ = 5(—a—|—b+2c) et Ao = —(a—b+ 3c).

10
On calcule
Ao — 2M1 +4X 0 0
)\013+/\1M+)\2M2 = 0 Ao+ M A1+ 2A9
0 —(AM1+2X2) Ao+ N\

Or, avec les valeurs de g, A1 et A9 choisies, il vient

a+4b—2c  2(-a+b+2c) +2(a—b+30)

Ao — 21 + 4N = g - —q
a+4b—2¢c —a+b+2c
Ao+ AL = % =b
_ b9 _
A 420y = —arbhze azbide
5 5
a 0 O
Ainsi, on obtient A\gls + MM +XoM?>=| 0 b ¢ | = A. Par conséquent la

0 —c b

matrice A se décompose sous la forme A = Aol3 + A\ M + Ao M? avec \g, A1, A réels.

L’analyse garantit 'unicité de cette décomposition.

(c¢) Le résultat de la question 2.(a) se réinterpréte sous la forme : Pour tout

1 -2 4
Y € M31(R), il existe un unique X € M3z 1(R) telque [ 1 1 0 | X =Y. Par
0o 1 2
1 -2 4
conséquent, la matrice 1 1 0 est inversible.
0 1 2

De plus, la résolution du systéme (S) réalisée lors de la question 2.(a)donne

1
Ao = —(a+4b—2¢)

)\]_ = g(_a+b+2c)

1
A2 = ﬁ(a—b+3c)
. 2 8 -4
qui se réécrit sous la forme X = 0 -2 2 4 Y. La méthode d’inversion
1 -1 3
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d’une matrice par résolution d’un systéme linéaire donne immédiatement

-1

a 0 0 a 0 0
1. Soient A=| 0 b ¢ et A = 0o v / deux matrices dans A. On calcule
0 —c b 0 - v
a 0 0 ad 0 0 aa’ 0 0
AA = 0 b ¢ 0 v Jd|= 0 b —cd bd + bt
0 —c b 0 = v 0 —(bd+cb) bb—cd
donc AA’ € A.

2. Soit n € N. La matrice M appartient & A et on montre que la matrice
M"™ = M x --- x M appartient & A par récurrence en utilisant M" Tt = M x M". Etant
——

n fois
donnée la forme des matrices de A, il existe des réels ay,, b, et ¢, tels que

a, O 0
M"™ = 0 b, ¢
0 —c, by

Remarque Cette récurrence est triviale, on n’était pas obligé de la rédiger, mais le mot

"récurrence" doit apparaitre dans la rédaction.

1 00
3.(a) OnaM°=I3=| 0 1 0 |[doncag=1, bp=1 et cg=0.0na
0 0 1
-2 0 0
M=M= 0 1 1 donca; =-2, by=1 et ¢ =1.
0 -1 1

(b) Pour tout entier n € IN, on a

A1 0 0 -2 0 0 a, 0 0
0 bpy1i Cny1 | =M"TP=MM"=| 0 1 1 0 by, cn
0 —Cn+1 bn_H_ 0 -1 1 0 —Cn bn

—2a, 0 0
= 0 b, — ¢y, b, + cn,

0 _(bn + cn) b’n —Cp
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Par conséquent, pour tout n € IN, on a

bn+1 =b, —cp
an+1 = —2a, et

Cn41 = by, + cp

4. La suite (an)nen vérifie ap = 1 et la relation, pour tout n € N, a,+1 = —2a,. La suite

(an)nenN est une suite géométrique de raison —2. Il s’ensuit
VnelN, a,=ao(—2)" = (-2)".
5. Soit n € N. On a
Znt1 = bpt1 +icny1r = by —cn+i(bn +cn) = by +ic, +i(bn +icy) = 2n +izn = (141)2y.
La suite (2, )nen est une suite géométrique de raison 14 i avec zg = by + ico = 1. 1l

s’ensuit

VneN, z,=(1+i)"

Pour conclure, b, étant par construction la partie réelle du complexe z,, il vient
VYn €N, b, =Re((1+4)").
en écrivant 1 41¢ = \/ieig, il vient

Re((14+1i)") =Re ((\@e’%)"> =Re <(\/§)" <ei§>n> = Re ((ﬂ)”ei”%> = (V2)" cos (n%) :
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