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Correction du devoir maison no 13

Exercice 1 On note C la courbe représenta-

tive de la fonction exponentielle, et D la droite

d’équation réduite y = 2x− 3.

1. d(M,D) =
| − 2x0 + ex0 + 3|√

5

On pose g(x) = ex − 2x + 3. g est définie et

dérivable sur R,
g′(x) = ex − 2 > 0 ⇔ x > ln 2.
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La fonction g admet donc un minimum sur R atteint en x0 = ln 2 et

g(ln 2) = 2− 2 ln 2 + 3 = 5− ln 4 = ln

(
e5

4

)
> 0 car

e5

4
> 1

donc g est positive sur R et

la distance de M à D est minimale au point M (ln 2, 2). Cette distance est égale à
5− ln 4√

5
.

2. La tangente à la courbe C en x0 = ln 2 a pour coefficient directeur eln 2 = 2, donc

cette tangente est parallèle à la droite D.

Exercice 2 On considère la droite D par l’équation x+ y + 1 = 0 et pour tout réel m, on

note Cm l’ensemble des points M(x; y) dont les coordonnées vérifient l’équation

x2 + y2 + 2mx+ 2y + 2 = 0.

1. x2 + y2 + 2mx+ 2y + 2 = 0 ⇔ (x+m)2 + (y + 1)2 = m2 − 1

• Si m2 > 1 i.e m /∈ [−1, 1] alors l’ensemble Cm est le cercle de centre (−m,−1) et de

rayon
√
m2 − 1.

• Si m2 = 1 i.e m = 1 ou m = −1 alors l’ensemble Cm est un point de coordonnées

(−m,−1).

• Si m2 < 1 i.e m ∈ [−1, 1] alors l’ensemble Cm est vide.

2. On suppose que |m| > 1.

La distance de la droite D au centre du cercle Cm est d =
|m|√
2
et

d < R =
√
m2 − 1 ⇔ m2 < 2m2 − 2 ⇔ m2 > 2 ⇔ |m| >

√
2.

Donc si |m| >
√
2, D et Cm sont sécants en deux points. Si m = ±

√
2, D et Cm sont

tangents en un point et si |m| <
√
2, D ∩ Cm = ∅

Remarque On peut aussi déterminer l’intersection :

M(x; y) ∈ Cm ∩D ⇔

{
x+ y + 1 = 0

(x+m)2 + (y + 1)2 = m2 − 1

Mme Bouquier Page 1/2 Lycée Jean Perrin Marseille



PTSI1

⇔

{
y = −x− 1

2x2 + 2mx+ 1 = 0

∆ = 4m2 − 8 = 4(m2 − 2) Donc, si |m| ⩾
√
2, Cm ∩D est constitué de 2 points x =

−m+
√
m2 − 2

2
ou x =

−m−
√
m2 − 2

2
y = 1− x

Si 1 < |m| <
√
2 alors Cm ∩D = ∅

Exercice 3 On considère l’équation : x2 + y2 − 4kx− 2y + 4k = 0 avec k ∈ R.

1. x2 + y2 − 4kx− 2y + 4k = 0 ⇔ (x− 2k)2 + (y − 1)2 = 4k2 − 4k + 1 = (2k − 1)2

Cette équation est celle du cercle Ck de centre Ωk(2k, 1) et de rayon |2k − 1| ,

éventuellement réduit à un point si k =
1

2
.

2. Ωk(2k, 1) = (0 + 2k, 1 + 0k). L’ensemble des centres des cercles Ck est la droite passant

par A(0, 1) et de vecteur directeur
−→
i (1, 0)

3. Si k =
1

2
alors le cercle C 1

2
est réduit au point (1, 1).

Or tous les cercles Ck contiennent ce point. Comme leurs centres sont alignés, ils sont

alors tangents deux à deux en ce point.
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