Limites et continuité

Dans ce chapitre, I est un intervalle de \mathbb{R} non vide et non réduit à un point et $f:I\to\mathbb{R}$.

1 Limites d'une fonction

1.1 Limite finie ou infinie en un réel a

Définition 1. Soit un réel a appartenant à I ou extrémité de I et $\ell \in \mathbb{R} \cup \{\pm \infty\}$.

On dit que f admet pour limite ℓ en a si

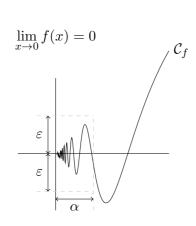
i) $\ell \in \mathbb{R}$ et $\forall \varepsilon > 0$, $\exists \alpha > 0$, $\forall x \in I$, $|x - a| \le \alpha \Rightarrow |f(x) - \ell| \le \varepsilon$.

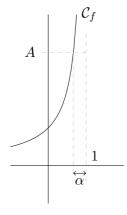
ii) $\ell = +\infty$ et $\forall A \in \mathbb{R}, \ \exists \alpha > 0, \ \forall x \in I, \ |x - a| \le \alpha \Rightarrow f(x) \ge A.$

 $iii) \ \ell = -\infty \ \text{ et } \ \forall A \in \mathbb{R}, \ \exists \alpha > 0, \ \forall x \in I, \ |x - a| \leq \alpha \Rightarrow f(x) \leq A.$

Dans tous les cas, on note $f(x) \xrightarrow[x \to a]{} \ell$.

Si de plus f est défnie en a alors cette limite est finie et vaut f(a).





$$\lim_{x \to 1} f(x) = +\infty$$

Remarque: $f(x) \underset{x \to a}{\longrightarrow} \ell \iff f(a+h) \underset{h \to 0}{\longrightarrow} \ell.$

Exemple 1. Limite de $f(x) = \sqrt{x+3}$ en 2 et de $g(x) = \ln(x+1)$ en -1.

Propriété 1. Si f admet une limite en a alors cette limite est unique. On la note $\lim_{x\to a} f(x)$.

Si de plus f est définie en a alors cette limite est finie et vaut f(a).

1.2 Limite à droite et limite à gauche

Définition 2. Soit un réel a appartenant à I ou extrémité de I et $\ell \in \mathbb{R} \cup \{\pm \infty\}$.

1. f admet ℓ comme limite à droite en a si $f_{|I\cap]a,+\infty[}$ admet pour limite ℓ en a.

Dans ce cas, on note
$$f(x) \underset{x \to a^+}{\longrightarrow} \ell$$
 ou $\lim_{x \to a^+} f(x) = \ell$ ou $\lim_{\substack{x \to a \\ x > a}} f(x) = \ell$.

2. f admet ℓ comme limite à gauche en a si $f_{|]-\infty,a[\cap I}$ admet pour limite ℓ en a.

Dans ce cas, on note
$$f(x) \underset{x \to a^{-}}{\longrightarrow} \ell$$
 ou $\lim_{x \to a^{-}} f(x) = \ell$ ou $\lim_{\substack{x \to a \\ x < a}} f(x) = \ell$.

Exemple 2. Limite en 0 de
$$f(x) = \lfloor x \rfloor$$
, de $g(x) = \mathbf{1}_{\mathbb{R}^*}(x)$, de $h(x) = \begin{cases} 1 + x & \text{si } x \in [-1, 0] \\ 1 - x & \text{si } x \in [0, 1] \end{cases}$

Propriété 2. Soit $\ell \in \mathbb{R}$. Si f est définie sur I = [b, c] et $a \in]b, c[$, alors

$$f(x) \xrightarrow[x \to a]{} \ell$$
 ssi $f(x) \xrightarrow[x \to a^+]{} \ell$, $f(x) \xrightarrow[x \to a^-]{} \ell$ et $\ell = f(a)$.

Définition 3. Soit $\ell \in \mathbb{R} \cup \{\pm \infty\}$, I = [b, c] et $a \in]b, c[$. Si f est définie sur $I \setminus \{a\}$, on dit que f admet pour limite ℓ en a si $f(x) \xrightarrow[x \to a^+]{} \ell$ et $f(x) \xrightarrow[x \to a^-]{} \ell$.

Exemple 3. Limite en 0 de $f(x) = \frac{|x|}{x}$ et de $g(x) = e^{-\frac{1}{x^2}}$.

1.3 Limite finie ou infinie en $\pm \infty$

Définition 4. Soit f définie sur $I = [b, +\infty[, b \in \mathbb{R}, \text{ et } \ell \in \mathbb{R} \cup \{\pm \infty\}.$

On dit que f admet pour limite ℓ en $+\infty$ si

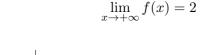
i)
$$\ell \in \mathbb{R}$$
 et $\forall \varepsilon > 0$, $\exists \alpha > 0$, $\forall x \in I$, $x \ge \alpha \Longrightarrow$

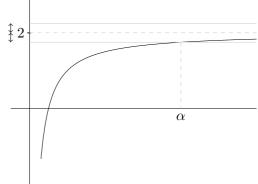
$$|f(x) - \ell| \le \varepsilon$$

ii)
$$\ell = +\infty$$
 et $\forall A \in \mathbb{R}, \ \exists \alpha > 0, \ \forall x \in I, \ x \ge \alpha \Longrightarrow f(x) \ge A$

$$iii)$$
 $\ell = -\infty$ et $\forall A \in \mathbb{R}, \ \exists \alpha > 0, \ \forall x \in I, \ x \ge \alpha \Longrightarrow f(x) \le A.$

Dans tous les cas, on note $f(x) \underset{x \to +\infty}{\longrightarrow} \ell$.





Remarque: Les définitions sont similaires pour les limites en $-\infty$ (à écrire). Si f admet une limite en $\pm \infty$ alors cette limite est unique, et notée $\lim_{x \to +\infty} f(x)$.

Exemple 4. Limites de $f(x) = e^{-x}$ en $\pm \infty$.

Propriétés des limites $\mathbf{2}$

Opérations sur les limites

Limite d'une somme $a \in \mathbb{R} \cup \{\pm \infty\}$ et $\ell \in \mathbb{R}$

$\lim_{a} f$	ℓ	ℓ	ℓ	$+\infty$	$-\infty$	$+\infty$
$\lim_a g$	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{a} (f+g)$	$\ell + \ell'$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	F.I.

Limite d'un produit $a \in \mathbb{R} \cup \{\pm \infty\}$ et $\ell \in \mathbb{R}$

$\lim_{a} f$	ℓ	$\ell > 0$	$\ell < 0$	$\ell > 0$	$\ell < 0$	$+\infty$	$+\infty$	$-\infty$	0	0
a.	ℓ'									
$\lim_{a} (f \times g)$	$\ell \times \ell'$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$	F.I.	F.I.

Limite d'un quotient $a \in \mathbb{R} \cup \{\pm \infty\}$ et $\ell \in \mathbb{R}$

$\lim_{a} f$	ℓ	$\ell \neq 0$	$+\infty$	$-\infty$	ℓ	ℓ	$\pm \infty$	0
$\lim_{a} g$	$\ell' \neq 0$	0	ℓ'	ℓ'	$+\infty$	$-\infty$	$\pm \infty$	0
$\lim_{a} (f/g)$	ℓ/ℓ'	$\pm \infty$	$\pm \infty$	$\pm \infty$	0	0	F.I.	F.I.

Exemple 5. Calculer les limites suivantes :

a)
$$\lim_{x \to -\infty} \left(x^3 + \frac{1}{x} \right)$$
 b) $\lim_{x \to +\infty} \left(5x - 2\sqrt{x} \right)$ c) $\lim_{x \to 0} \frac{3\sqrt{x} - 1}{5x^2}$

Propriété 3. Croissances comparées Soient $\alpha, \beta > 0$. On a :

1.
$$\lim_{x \to 0^+} x^{\alpha} |\ln(x)|^{\beta} = 0$$
 et $\lim_{x \to +\infty} \frac{[\ln(x)]^{\beta}}{x^{\alpha}} = 0$.

1.
$$\lim_{x \to 0^+} x^{\alpha} |\ln(x)|^{\beta} = 0$$
 et $\lim_{x \to +\infty} \frac{[\ln(x)]^{\beta}}{x^{\alpha}} = 0$.
2. $\lim_{x \to -\infty} |x|^{\alpha} e^{\beta x} = 0$, $\lim_{x \to +\infty} \frac{e^{\beta x}}{x^{\alpha}} = +\infty$ et $\lim_{x \to +\infty} \frac{e^{\beta x}}{[\ln(x)]^{\alpha}} = +\infty$.

Propriété 4. Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ telles que $f(I) \subset J$.

 $a, b, \ell \in \mathbb{R} \cup \{\pm \infty\}$ sont tels que a et b sont éléments ou extrémités de I et J respectivement.

Si
$$f(x) \xrightarrow[x \to a]{} b$$
 et $g(y) \xrightarrow[y \to b]{} \ell$ alors $g \circ f(x) = g(f(x)) \xrightarrow[x \to a]{} \ell$.

Exemple 6. Calculer la limite suivante : $\lim_{x \to +\infty} \ln \left(e^{\frac{1}{x}} - 1 \right)$.

Propriété 5. Soient $f: I \to \mathbb{R}, (u_n) \in I^{\mathbb{N}}$ et

 $a,\ell \in \mathbb{R} \cup \{\pm \infty\},$ où a est élément ou extrémité de I.

Si $u_n \xrightarrow[n \to +\infty]{} a$ et $f(x) \xrightarrow[x \to a]{} \ell$ alors $f(u_n) \xrightarrow[n \to +\infty]{} \ell$.

Exemple 7. Montrer que les fonctions cos et sin n'admettent pas de limite en $\pm \infty$.

2.2 Limites et inégalités

Définition 5. Soit $a \in \mathbb{R} \cup \{\pm \infty\}$.

- 1. Si $a \in \mathbb{R}$, on appelle **voisinage** de a tout intervalle de la forme $|a \alpha, a + \alpha|$, avec $\alpha > 0$.
- 2. Si $a = +\infty$, on appelle **voisinage** de a tout intervalle de la forme $]\alpha, +\infty[$, avec $\alpha \in \mathbb{R}$.
- 3. Si $a = -\infty$, on appelle **voisinage** de a tout intervalle de la forme $]-\infty, \alpha[$, avec $\alpha \in \mathbb{R}$.

Une propriété portant sur $f: I \to \mathbb{R}$ est dite vraie au voisinage de a ssi il existe un voisinage V de a tel que cette propriété est vraie sur $I \cap V$.

Propriété 6. Soit $a \in \mathbb{R} \cup \{\pm \infty\}$, élément ou extrémité de I.

- 1. Si f admet une limite finie ℓ en a alors f est bornée au voisinage de a.
- 2. Si f admet une limite finie ℓ non nulle en a alors f est du signe de ℓ au voisinage de a.

Théorème 1. Passage à la limite dans une inégalité large Soient $(\ell, \ell') \in \mathbb{R}^2$ et $a \in \mathbb{R} \cup \{\pm \infty\}$.

Si $f(x) \leq g(x)$ au voisinage de a, et si $f(x) \underset{x \to a}{\longrightarrow} \ell$ et $g(x) \underset{x \to a}{\longrightarrow} \ell'$, alors $\ell \leq \ell'$.

Théorème 2. des gendarmes Soient $\ell \in \mathbb{R}$ et $a \in \mathbb{R} \cup \{\pm \infty\}$.

Si $g(x) \le f(x) \le h(x)$ au voisinage de a et si $g(x) \xrightarrow[x \to a]{} \ell$ et $h(x) \xrightarrow[x \to a]{} \ell$, alors $f(x) \xrightarrow[x \to a]{} \ell$.

Exemple 8. Étudier la limite de $f: x \mapsto x \mid \frac{1}{x} \mid$ en 0.

Théorème 3. de minoration ou de majoration Soit $a \in \mathbb{R} \cup \{\pm \infty\}$.

1. Si $f(x) \leq g(x)$ au voisinage de a et $f(x) \underset{x \to a}{\longrightarrow} +\infty$ alors $g(x) \underset{x \to a}{\longrightarrow} +\infty$ (minoration).

2. Si $f(x) \leq g(x)$ au voisinage de a et $g(x) \underset{x \to a}{\longrightarrow} -\infty$ alors $f(x) \underset{x \to a}{\longrightarrow} -\infty$ (majoration).

Exemple 9. Étudier la limite de $f: x \mapsto \sqrt{x} \left\lfloor \frac{1}{x} \right\rfloor$ en 0.

Théorème 4. Limite monotone-admis Soient $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R} \cup \{+\infty\}$.

- 1. Si f est croissante majorée sur [a, b[alors f admet une limite finie à gauche en b;
- 2. Si f est croissante non majorée sur a, b alors a,
- 3. Si f est décroissante minorée sur a, b alors f admet une limite finie à gauche en b
- 4. Si f est décroissante non minorée sur]a,b[alors $f(x)\underset{x\to b^-}{\longrightarrow} -\infty$

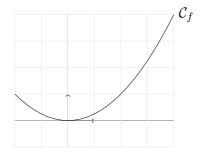
Remarque : On a des énoncés similaires pour la limite à droite en a (à écrire). Ainsi, si f est monotone sur l'intervalle a, b alors f admet une limite finie ou infinie aux bornes de a, b.

3 Continuité d'une fonction

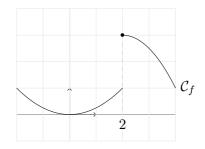
3.1 Définition de la continuité

Définition 6. Soit $a \in I$.

- 1. On dit que f est **continue** en a si $f(x) \xrightarrow[x \to a]{} f(a)$. Sinon, f est dite discontinue en a.
- 2. On dit que f est **continue à droite** en a si $f(x) \underset{x \to a^+}{\longrightarrow} f(a)$.
- 3. On dit que f est **continue à gauche** en a si $f(x) \underset{x \to a^{-}}{\longrightarrow} f(a)$.



Fonction continue sur [-2, 4]



Fonction discontinue en a=2

Exemple 10. Étudier la continuité en 0 des fonctions valeur absolue et partie entière.

Remarque : f est continue en a ssi elle est continue à droite et à gauche en a.

Définition 7. Soit $a \in I$ et f définie sur $I \setminus \{a\}$.

On dit que f est prolongeable par continuité en a ssi f admet une limite finie ℓ en a.

Dans ce cas, la fonction \widetilde{f} définie sur I par $\widetilde{f}(x) = \begin{cases} f(x) & si \ x \in I \setminus \{a\} \\ \ell & si \ x = a \end{cases}$

est appelée prolongement par continuité de f en a.

Exemple 11. Montrer que $f: x \mapsto x \ln |x|$ admet un prolongement par continuité en 0.

Remarque : Le prolongement par continuité de f en a est une fonction continue en a.

Définition 8. On dit que f est continue sur I ssi f est continue en tout réel a de I.

L'ensemble des fonctions continues sur I est noté $\mathscr{C}^0(I)$, ou simplement $\mathscr{C}(I)$.

Propriété 7. Les fonctions polynômes, abs, exp, ch, sh, ln, puissances, cos, sin, tan, arccos, arcsin, arctan sont continues sur leur ensemble de définition.

3.2 Fonctions continues et opérations

Propriété 8. Soit $a, \lambda \in \mathbb{R}$.

Si f et g sont continues en a (sur I) alors f + g, λf et fg sont continues en a (sur I).

Si de plus g ne s'annule pas en a (sur I) alors f/g est continue en a (sur I).

Exemple 12. Étudier la continuité de la fonction $f: x \mapsto \frac{x^2 \ln(x)}{x-1}$.

Propriété 9. Soient $f: I \to J$ et $g: J \to \mathbb{R}$.

- 1. Si f est continue en $a \in I$ et g est continue en f(a) alors $g \circ f$ est continue en a.
- 2. Si f est continue sur I et g est continue sur J alors $g \circ f$ est continue sur I.

Exemple 13. Étudier la continuité de la fonction $f: x \mapsto \arcsin(\sqrt{x-1})$.

3.3 Propriétés des fonctions continues

Théorème 5. des valeurs intermédiaires Soit f une fonction continue sur I = [a, b].

Si k est un réel compris entre f(a) et f(b) alors il existe $c \in [a, b]$ tel que f(c) = k.

Remarque : f continue sur [a, b] "prend" toutes les valeurs intermédiaires entre f(a) et f(b).

Exemple 14. Montrer que l'équation arccos(x) = x admet au moins une solution dans [0, 1].

Corollaire 1. Soit une fonction f continue sur un intervalle I.

- 1. L'image f(I) de I par f est un intervalle.
- 2. Si de plus f ne s'annule pas sur I, alors f est de signe constant.

Théorème 6. des bornes atteintes-admis Si f est une fonction continue sur un segment I = [a, b] alors f est bornée et atteint ses bornes (f admet un maximum et un minimum sur [a, b]).

Exemple 15. Soit f continue et strictement positive sur [a,b].

Montrer que f est minorée par un réel m strictement positif.

Théorème 7. de la bijection Si f est continue et strictement monotone sur l'intervalle I alors f réalise une bijection de I sur l'intervalle f(I).

De plus, f^{-1} est continue et strictement monotone sur f(I), de même monotonie que f.

Exemple 16. Démontrer que l'équation $3 \ln(x) = x$ admet exactement deux solutions.

4 Fonctions complexes

Définition 9. Soit $f: I \to \mathbb{C}$ et a élément ou extrémité de I.

- 1. On dit que f est bornée sur I s'il existe $K \in \mathbb{R}_+$ tel que $\forall x \in I, |f(x)| \leq K$.
- 2. On dit que f a pour **limite** $\ell \in \mathbb{C}$ en a si $|f(x) \ell| \underset{x \to a}{\longrightarrow} 0$. Ce que l'on note $f(x) \underset{x \to a}{\longrightarrow} \ell$.
- 3. Si $a \in I$, on dit que f est **continue** en a si $f(x) \xrightarrow[x \to a]{} f(a)$. On dit que f est continue sur I ssi f est continue en tout a de I.

Propriété 10. Soit $f: I \to \mathbb{C}$ et a élément ou extrémité de I.

1. Si f admet une limite finie en a alors cette limite est unique, et notée $\lim_{x\to a} f(x)$.

2. Si f admet une limite finie en a alors f est bornée au voisinage de a.

Propriété 11. (opérations sur les limites) Soient $f,g:I\to\mathbb{C}$ et a élément ou extrémité de I.

- 1. $f(x) \xrightarrow[x \to a]{} \ell \in \mathbb{C}$ ssi $\operatorname{Re}(f(x)) \xrightarrow[x \to a]{} \operatorname{Re}(\ell)$ et $\operatorname{Im}(f(x)) \xrightarrow[x \to a]{} \operatorname{Im}(\ell)$.
- 2. Si $f(x) \xrightarrow[x \to a]{} \ell \in \mathbb{C}$ et $g(x) \xrightarrow[x \to a]{} \ell' \in \mathbb{C}$ alors : $f(x) + g(x) \xrightarrow[x \to a]{} \ell + \ell'$, $f(x) \times g(x) \xrightarrow[x \to a]{} \ell \times \ell' \quad \text{et} \quad \frac{f(x)}{g(x)} \xrightarrow[x \to a]{} \frac{\ell}{\ell'} \quad \text{(si } g \text{ ne s'annule pas et } \ell' \neq 0\text{)}.$
- 3. Si f et g sont continues en $a \in I$ (sur I) alors f + g, fg, f/g (si g ne s'annule pas), Re(f), Im(f) et |f| sont continues en a (sur I).