PTSI1 TD 13

Dérivabilité

Exercice 1 Dans chaque cas, étudier la dérivabilité de f et déterminer sa dérivée :

1.
$$f(x) = \begin{cases} x^x & \text{si } x > 0\\ 1 & \text{si } x = 0 \end{cases}$$

$$2. f(x) = \begin{cases} \frac{\cos(x)}{\sqrt{\pi - 2x}} & si \ x < \frac{\pi}{2} \\ 0 & si \ x = \frac{\pi}{2} \end{cases}$$

Exercice 2 Soit f définie par $f(x) = \begin{cases} a\sqrt{x} + \ln(1+x) & \text{si } x > 0 \\ b\operatorname{ch}(x) + cx + d & \text{si } x \leq 0 \end{cases}$, où $(a, b, c, d) \in \mathbb{R}^4$.

- 1. Déterminer une CNS pour que f soit continue en 0. Quelle est alors la valeur de f(0)?
- 2. Déterminer une CNS pour que f soit dérivable en 0. Quelle est alors la valeur de f'(0)?

Exercice 3 Trouver toutes les solutions sur \mathbb{R} des équations différentielles :

1.
$$x^2y' - \alpha y = 0$$
 2. $xy' + y = \frac{2x}{x^2 + 1}$.

Exercice 4 Montrer par récurrence sur $n \in \mathbb{N}$ que pour tout polynôme P de degré n, l'équation $P(x) = e^x$ admet au plus n + 1 solutions réelles distinctes.

Exercice 5

- 1. On se propose d'étudier une méthode d'approximation du point fixe de $f: x \mapsto \ln(x+3)$ dans \mathbb{R}_+ . Pour cela, on considère une suite (u_n) définie par $u_0 \in \mathbb{R}_+$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.
 - (a) Montrer que la fonction f admet effectivement un unique point fixe α dans \mathbb{R}_+ .
 - (b) Montrer que la fonction f est k-lipschitzienne sur \mathbb{R}_+ , avec 0 < k < 1 (contractante).
 - (c) Montrer que $\forall n \in \mathbb{N}, |u_n \alpha| \leq k^n |u_0 \alpha|$.
 - (d) On choisit $u_0 = 2$. Quelle précision sur α obtient-on avec u_4 ?
- 2. Déterminer, de même, une méthode d'approximation du point fixe du cosinus dans [0, 1].

Exercice 6 Soit $\alpha \in]0,1[. \ \forall n \in \mathbb{N}^*, \text{ on pose } u_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}$

- 1. Montrer que $\forall k \in \mathbb{N}^*$, $\frac{1-\alpha}{(k+1)^{\alpha}} \le (k+1)^{1-\alpha} k^{1-\alpha} \le \frac{1-\alpha}{k^{\alpha}}$
- 2. En déduire la limite de u_n .
- 3. Étudier le cas où $\alpha > 1$.

PTSI1 TD 13

Exercice 7 Soit $n \in \mathbb{N}^*$. On considère la fonction f définie sur \mathbb{R}_+ par $f(x) = \frac{1+x^n}{(1+x)^n}$

- 1. Démontrer que f admet un minimum à déterminer.
- 2. En déduire que pour tout $x \ge 0$, $(1+x)^n \le 2^{n-1}(1+x^n)$.
- 3. Montrer finalement que $\forall (x,y) \in (\mathbb{R}_+)^2, \ (x+y)^n \leq 2^{n-1}(x^n+y^n).$

Exercice 8

- 1. Déterminer la dérivée n-ième de la fonction $g: x \mapsto (x+1)^2 e^{-x}$
- 2. (a) Déterminer la dérivée n-ième de la fonction $f: x \mapsto (x-a)^n (x-b)^n$, où $(a,b) \in \mathbb{R}^2$.
 - (b) En déduire la valeur de $S_n = \sum_{i=0}^n \binom{n}{i}^2$

Exercice 9 Prolonger par continuité f, puis déterminer si ce prolongement est \mathscr{C}^1 sur son ensemble de définition où $f(x) = \frac{|x|}{x} \ln(1-|x|)$

Exercice 10 Soit
$$f$$
 définie sur \mathbb{R} par $f(x) = \begin{cases} e^x & si \ x < 0 \\ ax^2 + bx + c & si \ x \ge 0 \end{cases}$

Déterminer une condition nécessaire et suffisante sur a, b et c pour que $f \in \mathscr{C}^2(\mathbb{R})$.

Exercice 11 Soit f définie sur \mathbb{R} par $f(x) = e^{-\frac{1}{x^2}}$ si $x \neq 0$ et f(0) = 0.

- 1. Montrer que f est continue sur \mathbb{R} et de classe \mathscr{C}^{∞} sur \mathbb{R}^* .
- 2. Montrer que $\forall n \in \mathbb{N}^*$, il existe une fonction polynôme P_n telle que $\forall x \neq 0$,

$$f^{(n)}(x) = \frac{P_n(x)}{x^{3n}} f(x).$$

- 3. Calculer, pour tout $n \in \mathbb{N}^*$, $\lim_{x \to 0} \frac{f(x)}{x^{3n+1}}$.
- 4. En déduire que f est de classe \mathscr{C}^{∞} sur \mathbb{R} et déterminer $f^{(n)}(0)$ pour tout $n \in \mathbb{N}^*$.