Colles semaine 10

En bref

- Injection, surjection et bijection.
- Bijection réciproque
- Image directe et images réciproques de sous-ensemble par une application.
- Cas des applications réelles. Théorème de la bijection
- Dérivation des bijections réciproques réelles.
- Étude des fonctions trigonométriques réciproques.
- Application à la primitive de fractions rationnelles.

Exemples non exhaustifs de questions de cours

Les suggestions suivantes restent des exemples d'illustrations, les colleurs ont toute liberté pour poser une question de cours.

- Montrer que la composée de deux injections (resp. surjections, resp. bijections) est encore injective (resp. surjective, resp. bijective).
- Démontrer soigneusement que la fonction arcsinus est impaire.
- Définir proprement la fonction arcsinus (ou arcosinus ou arctangente). Étudier sa dérivabilité et sa dérivée.
- Calculer $\int_{0}^{1} \frac{1}{x^2+x+1} dx$ ou un exemple du même acabit (avec dénominateur sans racines réelles).

Note aux colleurs

- L'étude de suites implicites semble parfaitement adaptée au programme de cette semaine.
- Les fonctions trigonométriques hyperboliques réciproques ne sont pas au programme de PTSI... et fournissent donc de bonnes suggestions d'exercices. On s'est contenté de l'étude de argth en TD.

En détail

Théorie des applications

Reprise du programme précédent avec en plus :

4 Cas des fonctions réelles

4.3 Dérivées des applications réciproques

Proposition 1 (Dérivée des réciproques). Soit I et J deux intervalles de \mathbb{R} et f une bijection de I sur J. Soit également $x \in I$ et $y = f(x) \in J$. On suppose que f est dérivable en x. Alors f^{-1} est dérivable en y si et seulement si $f'(x) \neq 0$, et dans ce cas :

$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))}$$

5 Applications aux fonctions trigonométriques réciproques

5.1 Arcsinus

Proposition-Définition 2 (fonction Arcsinus). La fonction sinus réalise une bijection de $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ sur [-1; 1]. Sa réciproque s'appelle la fonction arcsinus et se note \arcsin . Pour tout $y \in [-1; 1]$, $\arcsin(y)$ est donc défini comme l'unique réel $\theta \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ vérifiant $\sin(\theta) = y$.

Théorème 3. La fonction Arcsinus : $[-1;1] \rightarrow \left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ est une fonction bijective, impaire strictement croissante. Elle est dérivable sur]-1;1[et

$$\forall y \in]-1; 1[, \arcsin'(y) = \frac{1}{\sqrt{1-y^2}}.$$

Lemme 4. On $a \forall x \in [-1; 1]$, $\sin(\arcsin(x)) = x$.

Attention ! La formule précédente n'est pas valable sur \mathbb{R} tout entier, pour la bonne raison que $\arcsin(x)$ n'est pas définie sur \mathbb{R} .

De même, bien qu'elle soit tentante, on prendra garde avec l'identité $x = \arcsin((\sin(x))$ qui n'est valable **que si** $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

5.2 Arccosinus

Proposition-Définition 5 (fonction Arccosinus). La fonction cosinus réalise une bijection de $[0; \pi]$ sur [-1; 1]. Sa réciproque s'appelle la fonction arccosinus et se note arccos. Pour tout $y \in [-1; 1]$, arccos(y) est donc défini comme l'unique réel $\theta \in [0; \pi]$ vérifiant $\cos(\theta) = y$.

Théorème 6. La fonction Arccosinus : $[-1; 1] \rightarrow [0; \pi]$ est une fonction bijective et strictement décroissante. Elle est dérivable sur]-1; 1[et

$$\forall y \in]-1; 1[, \arccos'(y) = -\frac{1}{\sqrt{1-y^2}}.$$

Attention! La fonction arccosinus n'est ni paire ni impaire.

Lemme 7. On $a \forall x \in]-1; 1[, \cos(\arccos(x)) = x.$

Attention! La formule précédente n'est pas valable sur \mathbb{R} tout entier, pour la bonne raison que $\arccos(x)$ n'est pas définie sur \mathbb{R} .

De même, bien qu'elle soit tentante, on prendra garde avec l'identité $x = \arccos((\cos(x)))$ qui n'est valable **que si** $x \in [0; \pi]$.

L'étude des dérivées des fonctions réciproques permet déjà d'écrire une formule intéressante :

Exercice 8. Prouver que pour tout $x \in [-1; 1]$, on a la formule : $\arccos(x) + \arcsin(x) = \frac{\pi}{2}$. On cherchera deux preuves différentes, une par étude de fonctions, l'autre purement trigonométrique.

5.3 Arctangente

Proposition-Définition 9 (fonction Arctan). La fonction tangente réalise une bijection de $\left]-\frac{\pi}{2}; \frac{\pi}{2}\right[$ $sur\]-\infty; +\infty[$. Sa réciproque s'appelle la fonction arctangente et se note \arctan . Pour tout $y\in\mathbb{R}$, $\arctan(y)$ est donc défini comme l'unique réel $\theta\in\left]-\frac{\pi}{2}; \frac{\pi}{2}\right[$ vérifiant $\tan(\theta)=y$.

Théorème 10. La fonction Arctangente : $\mathbb{R} \to \left] -\frac{\pi}{2} \right]$; $\frac{\pi}{2}$ est une fonction bijective, impaire strictement croissante. Elle est dérivable sur \mathbb{R} et

$$\forall y \in \mathbb{R}, \ \arctan'(y) = \frac{1}{1+y^2}.$$

Remarque 11. La fonction arctangente est définie sur \mathbb{R} tout entier.

Méthode 12. Si P est un polynôme de degré 2 sans racines réelles, alors on peut primitiver la fonction $\frac{1}{P}$ à l'aide de la fonction arctangente. Pour ce faire, il convient de :

- Mettre P sous forme canonique.
- Multiplier par une constante bien choisie pour faire apparaître une forme de type $\frac{1}{P(t)} = \frac{\alpha}{(\beta t + \gamma)^2 + 1}$.
- Appliquer alors un changement de variable affine vérifiant la relation $y^2 = (\beta t + \gamma)^2$.
- Utiliser la dérivée de arctangente.

Illustrons ces quatre étapes sur le calcul suivant :

$$I := \int_0^1 \frac{1}{t^2 + t + 1} dt \tag{1a}$$

$$= \int_0^1 \frac{1}{(t+1/2)^2 + 3/4} dt \qquad \text{(mise sous forme canonique)} \tag{1b}$$

$$= \frac{4}{3} \int_0^1 \frac{1}{\frac{4}{3}(t+1/2)^2 + 1} dt$$
 (multiplication par le bon facteur numérique) (1c)

$$=\frac{4}{3}\cdot\frac{\sqrt{3}}{2}\int_{1/\sqrt{3}}^{\sqrt{3}}\frac{1}{y^2+1}\mathrm{d}y$$
 par le changement de variable $y=\frac{2}{\sqrt{3}}(t+1/2)$ (1d)

$$= \frac{2}{\sqrt{3}} \left[\arctan(y) \right]_{1/\sqrt{3}}^{\sqrt{3}}$$
 primitive à l'aide d'arctangente) (1e)

$$= \frac{2}{\sqrt{3}} \left(\frac{\pi}{3} - \frac{\pi}{6} \right) = \frac{\pi}{3\sqrt{3}}.$$
 (1f)

Remarque 13. Combiné avec les méthodes des cours précédents, nous savons maintenant primitiver toutes les expressions de la forme $\frac{Q}{P}$ où P est un polynôme de degré 2 (avec ou sans racines réelles) et Q est un polynôme quelconque.