Colles semaine 9

En bref

- Matrices : formules de sommes et de produit.
- Transposées des matrices.
- Traduction matricielle des systèmes linéaires.
- Équivalence logique entre l'inversibilité des matrices carré et le caractère de Cramer des systèmes linéaires associés.
- Algorithme pratique pour déterminer l'inversibilité et l'éventuel inverse d'une matrice carrée.
- Critère du déterminant pour l'inversibilité d'une matrice (ou le caractère de Cramer d'un système 2×2 .
- Injections, surjections et bijections.
- Bijection réciproque d'une application bijective.
- Images directes et réciproques d'ensembles par une application.

Liste de questions de cours

Les étudiantes et étudiants se présentent à la colle en sachant répondre rapidement et précisément à TOUTES les questions suivantes. Ils seront interrogés sur l'une d'entre elles.

- Citer la formule de produit matriciel. L'appliquer pour montrer au choix du colleur :
 - $-(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$ pour deux matrices A et B de format compatible;
 - Tr(AB) = Tr(BA) pour deux matrices A et B de format compatible;
 - le produit de matrices triangulaires supérieures est triangulaire supérieure.
- Montrer que la composée de deux injections est encore injective.
- Montrer que la composée de deux surjections est encore surjective.
- Pour une application f de $E \to F$. Montrer que s'il existe une application $g: F \to E$ vérifiant $\begin{cases} f \circ g = \mathrm{Id}_F \\ g \circ f = \mathrm{Id}_E \end{cases}$, alors f est bijective. En déduire que si A est une matrice inversible, alors l'application $f: \begin{array}{ccc} \mathcal{M}_n(\mathbb{K}) & \to & \mathcal{M}_n(\mathbb{K}) \\ X & \mapsto & AX \end{array}$ est bijective.

Note aux colleurs

- Afin d'exprimer simplement les formules de produit matriciel, nous adoptons la notation A[i,j] pour désigner le coefficients de la matrice A en i-ème ligne et j-ème colonne. Ceci ayant pour avantage non négligeable de bien préciser que ce coefficient est une fonction de la matrice A.
- Lors de l'inversion d'une matrice, les étudiantes et étudiants doivent vérifier explicitement $A^{-1}A = I_n$ dans cet ordre là et en démarrant la vérification dès qu'une ligne de A^{-1} est connue. S'ils ne le font pas, c'est qu'ils ont mal appris leur cours!
- Nous avons pour le moment à peine effleuré le cas des fonctions réelles pour l'étude des injections et surjections. En particulier, le théorème de la bijection n'est pas encore au programme.

En détail

Matrices

Reprise du programme précédent

Applications entre ensembles

1 Généralités

Définition 1 (Restriction). Soit E et F deux ensembles et $f: E \to F$ une fonction. Pour toute partie $A \subset E$, on définit une fonction de A dans F que l'on appelle la restriction de f à A et que l'on note $f_{|A}$. Cette fonction est définie de la manière suivante : $f_{|A}: A \to F \times F$

Définition 2 (Prolongement). Soit A et F deux ensembles et $f: A \to F$ une fonction. Si E est un ensemble qui contient A et g est une fonction de E dans F, on dit que g est un prolongement de f si la restriction de g à A est la fonction f.

2 Injectivité et surjectivité

2.1 Vocabulaire

Définition 3 (Injection). Soit f une fonction entre deux ensembles E et F. On dit que f est injective si

$$\forall (x, x') \in E^2, \ \left(f(x) = f(x')\right) \implies (x = x')$$

Définition 4 (Surjection). Soit f une fonction entre deux ensembles E et F. On dit que f est surjective si

$$\forall y \in F, \exists x \in E, f(x) = y$$

Définition 5. Une fonction de E dans F est dite bijective si elle est à la fois injective et surjective.

2.2 Propriété élémentaires

Proposition 6 (Unicité des antécédents pour les fonctions injectives). Une fonction f de E dans F est injective si et seulement si tout élément de F admet au plus un antécédent.

Proposition 7 (Stabilité par composition). Soit E, F, G trois ensembles et $f \in F^E$ et $g \in G^F$.

- Si f et g sont chacune injective, alors $g \circ f$ est injective.
- Si f et g sont chacune surjective, alors $g \circ f$ est surjective.
- Si f et g sont chacune bijective, alors $g \circ f$ est bijective.

2.3 Bijection et bijections réciproques

Proposition-Définition 8 (Application réciproque d'une bijection). Soit $f: E \to F$ une application supposée bijective. Alors il existe une unique fonction $g: F \to E$ vérifiant : $\begin{cases} f \circ g = \operatorname{Id}_F \\ g \circ f = \operatorname{Id}_E \end{cases}$. Cette application g est encore bijective et s'appelle la bijection réciproque de f. On la note parfois f^{-1} .

Remarque 9. La bijection réciproque d'une application bijective $f: E \to F$ est l'application qui à tout $y \in F$ associe l'unique antécédent de y par f.

Lemme 10. Soit $f: E \to F$ une bijection et g sa bijection réciproque. La réciproque de g est la fonction f elle-même.

Proposition 11 (Réciproque de ce qui précède). Soit Soit $f: E \to F$ une fonction. S'il existe une fonction $g: F \to E$ telle que $f \circ g = \mathrm{id}_F$ et $g \circ f = \mathrm{id}_E$; alors f est bijective et la fonction g est la réciproque de f.

3 Images directes et images réciproques

3.1 Vocabulaires

Définition 12 (Images directes). Soit E et F deux ensembles et $f: E \to F$ une application entre ces deux ensembles. Soit également A un sous-ensemble de E. On appelle image directe de A (par f) et on note f(A) le sous-ensemble de F suivant :

$$f(A) = \{ f(a) \mid a \in A \}$$

Définition 13 (Images réciproques). Soit E et F deux ensembles et $f: E \to F$ une application entre ces deux ensembles. Soit également B un sous-ensemble de F. On appelle image réciproque de B (par f) et on note $f^{-1}(B)$ le sous-ensemble de E suivant :

$$f^{-1}(B) = \{ x \in E \mid f(x) \in B \}$$

Remarque 14 (Images réciproques et bijection). Si l'on se donne $f: E \to F$ une fonction bijective et B un sous-ensemble de F, la notation $f^{-1}(B)$ est à priori ambiguë. Elle peut désigner soit l'image réciproque de B par f, soit l'image directe de B par la bijection réciproque f^{-1} . Heureusement, ces deux notions correspondent exactement au même ensemble comme tout bon étudiant de PTSI sait le montrer.

3.2 Propriétés élémentaires

Proposition 15 (Union unions et intersection). Soit E et F deux ensembles et $f: E \to F$ une application entre ces ensembles. Alors:

- i) Pour tout $B_1 \subset F$ et $B_2 \subset F$, on a $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$.
- ii) Pour tout $B_1 \subset F$ et $B_2 \subset F$, on a $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.
- iii) Pour tout $A_1 \subset E$ et $A_2 \subset E$, on a $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.
- iv) Pour tout $A_1 \subset E$ et $A_2 \subset E$, on a $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$.

Pour le dernier cas, le lecteur est invité à chercher des exemples montrant que l'inclusion peut être stricte.

Proposition 16 (Composition d'image directe et réciproque). Soit E et F deux ensembles et $f: E \to F$ une application entre ces ensembles. Soit également A une partie de E et B une partie de F. Alors :

- i) $f^{-1}(f(A)) \supset A$.
- ii) $f(f^{-1}(B)) \subset B$.

Là encore, le lecteur est invité à chercher des exemples prouvant que ces inclusions peuvent être strictes.