Colles semaine 10

En bref

- Injections, surjections et bijections.
- Bijection réciproque d'une application bijective.
- Images directes et réciproques d'ensembles par une application.
- Théorème de la bijection pour les fonctions réelles.
- Dérivabilité des bijections réciproques de fonctions réelles dérivables et strictement monotones.
- Application des résultats précédents pour l'étude de arcsin, arccos et arctan.
- Primitive de toute fraction rationnelle à dénominateur de degré 2. La démarche doit être guidée si le dénominateur est de degré strictement supérieur.

Liste de questions de cours

Les étudiantes et étudiants se présentent à la colle en sachant répondre rapidement et précisément à TOUTES les questions suivantes. Ils seront interrogés sur l'une d'entre elles.

- Montrer que la composée de deux injections est encore injective.
- Montrer que la composée de deux surjections est encore surjective.
- Pour une application f de $E \to F$. Montrer que s'il existe une application $g: F \to E$ vérifiant $\begin{cases} f \circ g = \operatorname{Id}_F \\ g \circ f = \operatorname{Id}_E \end{cases}$, alors f est bijective. En déduire que si A est une matrice inversible, alors
 - l'application $f: \begin{array}{ccc} \mathcal{M}_n(\mathbb{K}) & \to & \mathcal{M}_n(\mathbb{K}) \\ X & \mapsto & AX \end{array}$ est bijective.
- Rappeler la définition précise de arcsinus (variante possible avec arccosinus), son domaine de dérivabilité et l'expression de sa dérivée. Prouver les deux derniers points à l'aide du théorème de dérivabilité des bijections réciproques.
- Rappeler la définition précise de arctangente. Prouver son imparité, sa dérivabilité et l'expression de sa dérivée.
- Calculer l'intégrale $\int_{1}^{4} \frac{1}{t^2 2t + 5} dt$.

Note aux colleurs

- Les versions avec limites du théorème des valeurs intermédiaires et du théorème de la bijection restent admises pour le moment.
- En théorie, les fonctions trigonométriques hyperboliques réciproques ne sont pas au programme. En pratique, cela fait de très bons sujets d'exercices.
- Nous avons pour le moment, traité un seul exemple de suite implicite à l'aide du théorème de la bijection. On préfèrera garder ces thèmes d'exercices pour la semaine suivante.

En détail

Applications entre ensembles

1 Cas général

Reprise du programme précédent

2 Cas des fonctions réelles

2.1 Deux résultats cruciaux

Théorème 1 (Théorème des valeurs intermédiaires, admis). Soit I un intervalle de \mathbb{R} et [c;d] un autre intervalle de \mathbb{R} . Soit également $f:I\to [c;d]$ une fonction continue. Si c et d admettent chacun un antécédent, alors la fonction f est surjective sur l'intervalle [c;d].

Théorème 2. Soit fonction f définie sur un intervalle de \mathbb{R} à valeurs dans \mathbb{R} . Si f est strictement monotone, alors elle est injective.

2.2 Reformulations diverses

Lemme 3 (À démontrer si nécessaire). Soit f une fonction définie sur un intervalle I de \mathbb{R} . Si f est injective et continue sur I, alors elle est strictement monotone sur I.

Théorème 4 (Image des intervalles par les fonctions continues). Soit I un intervalle de \mathbb{R} et f une fonction définie sur I à valeur dans \mathbb{R} et continue. Alors, l'image directe f(I) est un intervalle de \mathbb{R} .

Théorème 5 (Image des segments par les fonctions continues, admis). Soit I un intervalle fermé et borné (on dit aussi un segment) de \mathbb{R} et f une fonction définie sur I à valeur dans \mathbb{R} et continue. Alors, l'image directe f(I) est un intervalle fermé et borné de \mathbb{R} .

Théorème 6 (Théorème de la bijection). Soit [a; b] un intervalle de \mathbb{R} et f une fonction définie sur [a; b] à valeurs dans \mathbb{R} . Si f est une fonction continue et strictement monotone, alors elle réalise une bijection entre les intervalles [a; b] et J où J est l'intervalle définie par :

- -J = [f(a); f(b)] si f est strictement croissante.
- J = [f(b); f(a)] si f est strictement décroissante.

De plus, la réciproque de f est encore une bijection entre J et [a;b] qui a même sens de variation que f et qui est également continue.

Théorème 7 (Théorème de la bijection, version aux limites). Soit]a; b[un intervalle de \mathbb{R} et f une fonction définie sur]a; b[à valeurs dans \mathbb{R} . On suppose de plus que f admet des limites en a et b que l'on note respectivement ℓ_a et ℓ_b . Si f est une fonction continue et strictement monotone, alors elle réalise une bijection entre les intervalles]a; b[et J où J est l'intervalle définie par :

- $J = |\ell_a; \ell_b|$ si f est strictement croissante.
- $J =]\ell_b; \ell_a[$ si f est strictement décroissante.

De plus, la réciproque de f est encore une bijection entre J et a; b qui a même sens de variation que f et qui est également continue.

Ce théorème reste valables si les bornes a et b ou les limites ℓ_a et ℓ_b sont infinies.

2.3 Dérivabilité des bijections réciproques

Proposition 8 (Dérivée des réciproques). Soit I et J deux intervalles de \mathbb{R} et f une bijection de I sur J. Soit également $x \in I$ et $y = f(x) \in J$. On suppose que f est dérivable en x. Alors f^{-1} est dérivable en y si et seulement si $f'(x) \neq 0$, et dans ce cas :

$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))}$$

Remarque 9. Dans les notations du théorème précédent, si $f'(f^{-1}(y))$; alors la fonction f^{-1} admet une tangente verticale en y.

3 Application à la trigonométrie réciproque

3.1 Arcsinus

Proposition-Définition 10 (fonction Arcsinus). La fonction sinus réalise une bijection de $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ sur [-1; 1]. Sa réciproque s'appelle la fonction arcsinus et se note arcsin. Pour tout $y \in [-1; 1]$, arcsin(y) est donc défini comme l'unique réel $\theta \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ vérifiant $\sin(\theta) = y$.

Théorème 11. La fonction Arcsinus : $[-1;1] \rightarrow \left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ est une fonction bijective, continue, impaire et strictement croissante. Elle est dérivable sur]-1;1[et

$$\forall y \in]-1; 1[, \arcsin'(y) = \frac{1}{\sqrt{1-y^2}}.$$

Lemme 12. On $a \forall x \in [-1; 1]$, $\sin(\arcsin(x)) = x$.

Attention ! La formule précédente n'est pas valable sur \mathbb{R} tout entier, pour la bonne raison que $\arcsin(x)$ n'est pas définie sur \mathbb{R} .

De même, bien qu'elle soit tentante, on prendra garde avec l'identité $x = \arcsin((\sin(x))$ qui n'est valable **que si** $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

3.2 Arccosinus

Proposition-Définition 13 (fonction Arccosinus). La fonction cosinus réalise une bijection de $[0; \pi]$ sur [-1; 1]. Sa réciproque s'appelle la fonction arccosinus et se note arccos. Pour tout $y \in [-1; 1]$, arccos(y) est donc défini comme l'unique réel $\theta \in [0; \pi]$ vérifiant $\cos(\theta) = y$.

Théorème 14. La fonction Arccosinus : $[-1; 1] \rightarrow [0; \pi]$ est une fonction bijective, continue et strictement décroissante. Elle est dérivable sur]-1; 1[et

$$\forall y \in]-1; 1[, \arccos'(y) = -\frac{1}{\sqrt{1-y^2}}.$$

Attention! La fonction arccosinus n'est ni paire ni impaire.

Lemme 15. On $a \forall x \in]-1; 1[, \cos(\arccos(x)) = x.$

Attention ! La formule précédente n'est pas valable sur \mathbb{R} tout entier, pour la bonne raison que $\arccos(x)$ n'est pas définie sur \mathbb{R} .

De même, bien qu'elle soit tentante, on prendra garde avec l'identité $x = \arccos((\cos(x)))$ qui n'est valable **que si** $x \in [0; \pi]$.

3.3 Arctangente

Proposition-Définition 16 (fonction Arctan). La fonction tangente réalise une bijection de $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ $sur \] -\infty; +\infty[$. Sa réciproque s'appelle la fonction arctangente et se note arctan. Pour tout $y \in \mathbb{R}$, arctan(y) est donc défini comme l'unique réel $\theta \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ vérifiant $tan(\theta) = y$.

Théorème 17. La fonction Arctangente : $\mathbb{R} \to \left] -\frac{\pi}{2} \right; \frac{\pi}{2} \left[\text{ est une fonction bijective, continue, impaire et strictement croissante. Elle est dérivable sur <math>\mathbb{R}$ et

$$\forall y \in \mathbb{R}, \ \arctan'(y) = \frac{1}{1+y^2}.$$

Remarque 18. La fonction arctangente est définie sur \mathbb{R} tout entier.

Méthode 19. Si P est un polynôme de degré 2 sans racines réelles, alors on peut primitiver la fonction $\frac{1}{P}$ à l'aide de la fonction arctangente. Pour ce faire, il convient de :

- Mettre P sous forme canonique.
- Multiplier par une constante bien choisie pour faire apparaître une forme de type $\frac{1}{P(t)} = \frac{\alpha}{(\beta t + \gamma)^2 + 1}$.
- Appliquer alors un changement de variable affine vérifiant la relation $y^2 = (\beta t + \gamma)^2$.
- Utiliser la dérivée de arctangente.

Illustrons ces quatre étapes sur le calcul suivant :

$$I := \int_0^1 \frac{1}{t^2 + t + 1} dt \tag{1a}$$

$$= \int_0^1 \frac{1}{(t+1/2)^2 + 3/4} dt \qquad \text{(mise sous forme canonique)} \tag{1b}$$

$$= \frac{4}{3} \int_0^1 \frac{1}{\frac{4}{3}(t+1/2)^2 + 1} dt$$
 (multiplication par le bon facteur numérique) (1c)

$$= \frac{4}{3} \cdot \frac{\sqrt{3}}{2} \int_{1/\sqrt{3}}^{\sqrt{3}} \frac{1}{y^2 + 1} dy \qquad \text{par le changement de variable } y = \frac{2}{\sqrt{3}} (t + 1/2) \qquad (1d)$$

$$= \frac{2}{\sqrt{3}} \left[\arctan(y) \right]_{1/\sqrt{3}}^{\sqrt{3}}$$
 primitive à l'aide d'arctangente) (1e)

$$= \frac{2}{\sqrt{3}} \left(\frac{\pi}{3} - \frac{\pi}{6} \right) = \frac{\pi}{3\sqrt{3}}.$$
 (1f)

Remarque 20. Combiné avec les méthodes des cours précédents, nous savons maintenant primitiver toutes les expressions de la forme $\frac{Q}{P}$ où P est un polynôme de degré 2 (avec ou sans racines réelles) et Q est un polynôme quelconque.