Colles semaine 11

En bref

- Théorème de la bijection pour les fonctions réelles.
- Dérivabilité des bijections réciproques de fonctions réelles dérivables et strictement monotones.
- Application des résultats précédents pour l'étude de arcsin, arccos et arctan.
- Primitive de toute fraction rationnelle à dénominateur de degré 2. La démarche doit être guidée si le dénominateur est de degré strictement supérieur.
- Résolution de l'équation $z^2 = w$ d'inconnue $z \in \mathbb{C}$ sous forme algébrique et sous forme trigonométrique.
- Résolution des équations complexes de degré 2.
- Relations coefficients-racines pour les polynômes de degré 2.
- Factorisation d'un polynôme connaissant une racine.
- Racines de l'unité et résolution de $z^n = re^{i\theta}$ d'inconnue $z \in \mathbb{C}$.

Liste de questions de cours

Les étudiantes et étudiants se présentent à la colle en sachant répondre rapidement et précisément à TOUTES les questions suivantes. Ils seront interrogés sur l'une d'entre elles.

- Les étudiants sont maintenant (censés être) des experts de l'étude des suites implicites.
- Rappeler la définition précise de arcsinus (variante possible avec arccosinus), son domaine de dérivabilité et l'expression de sa dérivée. Prouver les deux derniers points à l'aide du théorème de dérivabilité des bijections réciproques.
- Rappeler la définition précise de arctangente. Prouver son imparité, sa dérivabilité et l'expression de sa dérivée.
- Calculer l'intégrale $\int_{1}^{4} \frac{1}{t^2 2t + 5} dt$.
- Résoudre l'équation $z^2 = -5 + 12i$ d'inconnue $z \in \mathbb{C}$. On peut varier les valeurs numériques
- Prouver la formule de résolution des équations de degré 2 par mise sous forme canonique.
- Prouver que $\forall z \in \mathbb{C}, \ z^n = 1 \iff \exists k \in \mathbb{Z}, \ z = e^{\frac{2ik\pi}{n}} \iff \exists k \in [0; n-1], \ z = e^{\frac{2ik\pi}{n}}$

Note aux colleurs

- Le fait que si un polynôme P admet une racine a, alors il est factorisable par (x a) est pour le moment réduit à 'état de constat expérimental. On cherche une factorisation, et on en trouve une. On n'essaye pas de prouver ce résultat théorique.
- Nous avons admis le fait qu'une équation polynomiale de degré $n \geqslant$ admettait au plus n racines distinctes et au moins une racine sur \mathbb{C} .
- On a mentionné la formule de Taylor polynomiale (uniquement en zéro) afin de prouver l'unicité des coefficients d'un polynômes. Mais sa maîtrise n'est pas (encore) un objectif majeur de la semaine.
- Certains étudiants confondant encore fonction P et image P(x), je m'interdis pour le moment d'utiliser la notation X pour les polynômes.

En détail

Dérivation des bijections réciproques réelles et trigonométrie réciproque

Reprise du programme précédent

Équations polynomiales complexes

1 Prologue, rappels sur les polynômes

Nous commençons par rappeler ce qu'est un polynôme.

Définition 1. Soit P une application définie sur \mathbb{C} à valeur dans \mathbb{C} . On dit que P est une application polynomiale ou un polynôme s'il existe un entier naturel n et un (n+1)-uplet $(a_0, a_1, \ldots, a_n) \in \mathbb{C}^{n+1}$ tel que :

$$\forall z \in \mathbb{C}, \ P(z) = \sum_{k=0}^{n} a_k z^k. \tag{1}$$

Nous montrerons au chapitre sur les polynômes le lemme suivant :

Lemme 2 (degré). Soit P une application polynomiale, non constante nulle, alors il existe un et un unique entier naturel n et unique (n+1)-uplet $(a_0, a_1, \ldots, a_n) \in \mathbb{C}^{n+1}$ vérifiant

$$\begin{cases} \forall z \in \mathbb{C}, \ P(z) = \sum_{k=0}^{n} a_k z^k \\ et \ a_n \neq 0. \end{cases}$$
 (2)

Cet entier n s'appelle le degré de P et le complexe a_n s'appelle le coefficient dominant de P.

Par convention, le degré du polynôme constant nul vaut $-\infty$.

On note, pour tout $n \in \mathbb{N}$, $\mathbb{C}_n[X]$ l'ensemble des polynômes de degré au plus n (incluant le polynôme nul).

Théorème 3 (principe d'identification des coefficients d'un polynôme). La suite des coefficients d'un polynôme est unique. Notamment, pour tout entier $n \in \mathbb{N}$, on a

$$\forall (a_0, \dots, a_n) \in \mathbb{C}^{n+1}, \forall (b_0, \dots, b_n) \in \mathbb{C}^{n+1},$$

$$\left(\forall z \in \mathbb{R}, \sum_{k=0}^n a_k z^k = \sum_{k=0}^n b_k z^k\right) \Longrightarrow (\forall k \in [0; n], a_k = b_k).$$

2 Le second degré

Une équation du second degré s'écrit nécessairement sous la forme $az^2 + bz + c = 0$ d'inconnue $z \in \mathbb{C}$ où (a, b, c) est un triplet de complexe fixés avec $a \neq 0$.

2.1 Calcul de racines carrées

Définition 4. Soit $z \in \mathbb{C}$. On appelle racine carrée de z tout nombre complexe Z tel que $Z^2 = z$.

Proposition 5. Le complexe 0 admet une unique racine carrée qui est 0. Tout nombre complexe non nul admet exactement deux racines carrées qui sont opposées l'une de l'autre.

Remarque 6. Si a est un réel positif, on parle de la racine carrée de a pour désigner celle des deux racines qui est positive. Dans le cas où z est un nombre complexe, on ne dispose pas d'un tel moyen pour particulariser l'une des deux racines. Pour cette raison on dit **une** racine carrée de z et on s'interdit d'utiliser le symbole déterministe $\sqrt{}$ qui reste réservé aux réels positifs.

- Méthode 7 (Détermination de racine carré). 1. Via la forme trigonométrique : Soit $z \in \mathbb{C}^*$ qui admet pour forme trigonométrique : $z = re^{i\theta}$. Alors les racines carrées de z sont : $\sqrt{r}e^{i\frac{\theta}{2}}$ et $-\sqrt{r}e^{i\frac{\theta}{2}} = \sqrt{r}e^{i(\pi + \frac{\theta}{2})}$.
 - 2. Via la forme algébrique : Soit $z \in \mathbb{C} \mathbb{R}$. On pose z = x + iy avec $(x, y) \in \mathbb{R} \times \mathbb{R}^*$. On cherche Z = X + iY avec $(X, Y) \in \mathbb{R}^2$ tel que $Z^2 = z$. Alors, on en déduit :
 - par égalité des parties réelles : $X^2 Y^2 = \text{Re}(z) = x$
 - par égalité des modules : $X^2 + Y^2 = |z| = \sqrt{x^2 + y^2}$
 - par égalité des parties imaginaires : 2XY = Im(z), en particulier XY est du même signe que y.

Pourquoi obtient-on toutes les racines carrées de z?

2.2 Second degré général

Proposition 8 (Equation du second degré à coefficients complexes). Soient a, b et c trois nombres complexes avec $a \neq 0$. On considère l'équation :

$$(E) az^2 + bz + c = 0$$

on note $\Delta = b^2 - 4ac$ son discriminant. Alors,

— Si $\Delta \neq 0$, en notant δ une racine carrée de Δ , l'équation (E) admet les deux racines distinctes suivantes :

 $z_1 = \frac{-b-\delta}{2a}$ et $z_2 = \frac{-b+\delta}{2a}$.

— Si $\Delta = 0$, l'équation (E) admet pour racine double

$$z_0 = -\frac{b}{2a}.$$

Proposition 9. Si a, b et c sont réels et si z_1 est une racine de $az^2 + bz + c = 0$; alors $z_2 = \bar{z_1}$ est aussi une racine (pas nécessairement distincte) de l'équation.

2.3 Relation coefficients-racines

Proposition 10. Soient $a,\ b\ et\ c\ trois\ nombres\ complexes\ avec\ a\neq 0.$ Soit $(z_1,z_2)\in\mathbb{C}^2.$ Alors,

 z_1 et z_2 sont les racines de l'équation $az^2 + bz + c = 0$ si et seulement si $z_1 + z_2 = -\frac{b}{a}$ et $z_1z_2 = \frac{c}{a}$.

Application 11. — Soient deux nombres complexes s et p fixés. Si l'on cherche deux complexes z_1 et z_2 tels que :

$$z_1 + z_2 = s$$
 et $z_1 z_2 = p$

alors on peut dire que z_1 et z_2 sont solutions de l'équation : $z^2 - sz + p = 0$.

En particulier, il existe toujours un couple de tel complexes et ce couple est unique à l'ordre des éléments près.

— Si on connaît une des solutions de l'équation $az^2 + bz + c = 0$ (où a, b et c sont trois nombres complexes avec $a \neq 0$), alors on peut facilement trouver l'autre.

3 Degré quelconque et racines n-ièmes

Comme pour le degré 2, avant de résoudre une équation générale de degré n, il est bon de commencer par résoudre l'équation $z^n = a$ pour un complexe fixé a. La situation devenant d'ailleurs légèrement plus délicate, on s'attardera en priorité sur le cas a = 1 avant d'étudier le cas général.

Définition 12. Soit $n \in \mathbb{N}^*$ et a un complexe fixé. On appelle $racine\ n$ -ème $de\ a$ tout complexe z vérifiant $z^n = a$.

On appelle également racine n-ème de l'unité tout complexe z vérifiant $z^n=1$.

3.1 Racines de l'unité

Notation 13. L'ensemble des racines n-ièmes de l'unité est noté \mathbb{U}_n .

Proposition 14. Il existe exactement n racines de l'unité, ce sont les complexes

$$w_k = \exp\left(\frac{2\mathrm{i}k\pi}{n}\right)$$
 où $k \in \{0, 1, \cdots, n-1\}.$

Ainsi,

$$\mathbb{U}_n = \left\{ \exp\left(\frac{2ik\pi}{n}\right); \ k \in \mathbb{Z} \right\} = \left\{ \exp\left(\frac{2ik\pi}{n}\right); \ k \in [0; n-1] \right\}.$$

Proposition 15. Soit n un entier au moins égal à 2. On a $\sum_{z \in \mathbb{U}_n} z = 0$. Plus explicitement, cela signifie que si l'on pose $\omega = \exp\left(\frac{2\mathrm{i}\pi}{n}\right)$, alors on a

$$\sum_{k=0}^{n-1} \omega^k = 0.$$

3.2 Racine *n*-ème d'un complexe quelconque

Proposition 16. Soit $a \in \mathbb{C}^*$. Posons $a = re^{i\theta}$ avec $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$.

i) Le nombre complexe a admet exactement n racines n-ièmes, ce sont les

$$z_k = r^{\frac{1}{n}} e^{i\frac{\theta + 2k\pi}{n}}, \quad k \in \{0, 1, \dots, n-1\}.$$

- ii) Si z_0 est une racine n-ième particulière de a alors les racines n-ièmes de a sont les z_0w_k avec $k \in \{0, 1, \cdots, n-1\}$ et où les w_k sont les racines n-ièmes de l'unité. L'ensemble des racines n-ièmes de a est donc $z_0\mathbb{U}_n = \{z_0w \; ; \; w \in \mathbb{U}_n\}$.
- iii) Les images dans le plan des racines n-ièmes de a sont les sommets d'un polygone régulier à n côtés d'isobarycentre O.

3.3 Équations polynomiales générales

Théorème 17 (De D'Alembert-Gauss, admis). Soit $n \in \mathbb{N}^*$. Une équation polynomiale de degré n admet au moins une racine sur \mathbb{C} et au plus n racines distinctes.