Colles semaine 12

En bref

- Résolution de l'équation $z^2 = w$ d'inconnue $z \in \mathbb{C}$ sous forme algébrique et sous forme trigonométrique.
- Résolution des équations complexes de degré 2.
- Relations coefficients-racines pour les polynômes de degré 2.
- Factorisation d'un polynôme connaissant une racine.
- Racines de l'unité et résolution de $z^n = re^{i\theta}$ d'inconnue $z \in \mathbb{C}$.
- Équations différentielles normalisé d'ordre 1. Cas homogène, méthode de variation de la constante dans le cas d'un second membre.
- Étude sur des exemples de problèmes de raccord de solutions pour les équations différentielles d'ordre 1 non normalisées.
- Existence et unicité d'une solution à un problème de Cauchy d'ordre 1
- Équations différentielles homogènes à coefficients constants d'ordre 2.

Liste de questions de cours

Les étudiantes et étudiants se présentent à la colle en sachant répondre rapidement et précisément à TOUTES les questions suivantes. Ils seront interrogés sur l'une d'entre elles.

- Résoudre l'équation $z^2 = -5 + 12i$ d'inconnue $z \in \mathbb{C}$. On peut varier les valeurs numériques
- Prouver que $\forall z \in \mathbb{C}, \ z^n = 1 \iff \exists k \in \mathbb{Z}, \ z = \mathrm{e}^{\frac{2\mathrm{i}k\pi}{n}} \iff \exists k \in \llbracket 0 \ ; \ n-1 \rrbracket, \ z = \mathrm{e}^{\frac{2\mathrm{i}k\pi}{n}}.$
- Résoudre $1+z+\cdots+z^n=0$ d'inconnue $z\in\mathbb{C}$.
- Résoudre l'équation différentielle $y'(t) \frac{2}{t}y(t) = \sqrt{t}$ sur \mathbb{R}_+^* .
- Résoudre (1-i)y'' 4y' + (1+3i)y = 0.
- Déterminer l'unique fonction à valeurs réelle solution de $\begin{cases} y'' + y' + y = 0 \\ y\left(\frac{\pi}{\sqrt{3}}\right) = 1 \\ y'\left(\frac{\pi}{\sqrt{3}}\right) = 2 \end{cases}$

Note aux colleurs

- Certains étudiants confondant encore fonction P et image P(x), je m'interdis pour le moment d'utiliser la notation X pour les polynômes.
- Concernant les équations différentielles d'ordre 2, on se limite pour cette semaine au cas homogènes à coefficients constants. Il est donc difficile de poser d'autres questions que la question de cours. Mais on peut très bien poser ceci à titre de court exercice à un autre moment de la colle.

En détail

Équations polynomiales complexes

Reprise du programme précédent

1 Équations différentielles linéaire d'ordre 1

Notations valables pour toute la section:

Notation 1. On considère un intervalle J de \mathbb{R} (non vide et non réduit à un singleton) ainsi que α, β, γ trois fonctions continues sur J à valeurs dans \mathbb{K} .

On dit que qu'une fonction y définie sur J et à valeurs dans \mathbb{K} est solution de l'équation différentielle

$$\alpha y' + \beta y = \gamma. \tag{E_1}$$

si la fonction y vérifie :

$$\begin{cases} y \text{ est dérivable sur } J \\ \text{et } \forall x \in J, \ \alpha(x)y'(x) + \beta(x)y(x) = \gamma(x) \end{cases}$$

Définition 2. En reprenant les notations précédentes : si $\forall x \in J, \gamma(x) = 0$, alors l'équation (E_1) est dite homogène. On notera alors $E_{h,1}$ l'équation homogène associée à (E_1) obtenu en remplaçant la fonction γ par la fonction nulle.

Si $\forall x \in \mathbb{R}, \ \alpha(x) = 1$, alors l'équation (E_1) est dite normalisée ou réduite.

1.1 Cas des équations homogènes

1.1.1 Cas homogène à coefficients constant

Théorème 3. Soit $(a,b) \in \mathbb{C}^2$ un couple de scalaires avec $a \neq 0$ et J un intervalle de \mathbb{R} . On considère l'équation différentielle ay' + by = 0 d'inconnue une fonction y dérivable sur I à valeurs dans \mathbb{K} .

On introduit l'équation caractéristique az + b d'inconnue $z \in \mathbb{K}$. Cette équation admet une unique solution (car $a \neq 0$) que l'on note r.

L'ensemble des solutions de l'équation différentielle est alors $\{t \mapsto \lambda e^{rt} \mid \lambda \in \mathbb{K}\}.$

1.1.2 Cas homogène normalisé

On s'intéresse donc aux solutions de l'équation

$$y' + \beta y = 0. (E_{n,h,1})$$

Dans ce cas les solutions sont stables par combinaisons linéaires.

Lemme 4. Soit y_1 et y_2 deux solutions de l'équation homogène $(E_{n,h,1})$. Alors, pour tout couple $(\lambda,\mu) \in \mathbb{K}^2$, la fonction $\lambda y_1 + \beta y_2$ est solution de l'équation homogène $(E_{n,h,1})$.

Théorème 5. On note B une primitive de la fonction β sur J. Alors l'ensemble des solutions de l'équation homogène est :

$$\left\{ \begin{array}{ccc} J & \to & \mathbb{R} \\ x & \mapsto & \lambda \exp(-B(x)) \end{array} \mid \lambda \in \mathbb{K} \right\}$$

Autrement dit, toutes les solutions sont colinéaires à la fonction $x \mapsto \exp(-A(x))$. Si l'on note $y_0: \begin{tabular}{ll} J & \to & \mathbb{R} \\ x & \mapsto & \exp(-B(x)) \end{tabular}$, alors l'ensemble des solutions se note $\mathrm{Vect}(y_0)$

1.2 Cas avec second membre

On s'intéresse donc aux solutions de l'équation

$$y' + \beta y = \gamma. \tag{E_{n,1}}$$

On notera encore $(E_{n,h,1})$ l'équation homogène associée.

Dans ce cas l'ensemble des solutions s'exprime à l'aide de l'ensemble des solutions homogène ainsi que d'une solution particulière.

Théorème 6. Soit y_p une solution particulière de l'équation $(E_{n,1})$. On note encore B une primitive de la fonction β sur J. On note également S_h l'ensemble des solutions de l'équation homogène $E_{n,h,1}$ et S l'ensemble des solution de l'équation avec second membre $(E_{n,1})$. Alors l'ensemble des solutions de l'équation est :

$$S = \{y_p + y_0 \mid y_0 \in S_0\} = \left\{ \begin{array}{ccc} J & \to & \mathbb{R} \\ x & \mapsto & y_1(x) + \lambda \exp(-B(x)) \end{array} \mid \lambda \in \mathbb{K} \right\}$$

Autrement dit, il suffit de résoudre l'équation homogène et de trouver une solution de $(E_{n,1})$ pour trouver toutes les solutions de $(E_{n,1})$

Méthode 7 (Variation de la constante). On note encore B une primitive de β sur J. Pour trouver une solution particulière de l'équation $E_{n,1}$, on la cherche sous la forme $x \mapsto \lambda(x) \exp(-B(x))$. C'est-à-dire que on considère une fonction quelconque λ dérivable et que l'on pose ensuite $y: x \mapsto \lambda(x) \exp(-B(x))$.

On trouve alors une condition nécessaire et suffisante sur la fonction λ pour que y soit solution de $(E_{n,1})$. Une telle condition revient à spécifier la dérivée λ' et on n'a plus ensuite qu'à primitiver.

Théorème 8 (Problème de Cauchy pour le premier ordre normalisé). Soit $x_0 \in J$ et y_0 un réel quelconque. Alors il existe un et une unique fonction y qui soit solution de $(E_{n,1})$ et qui vérifie en plus la condition $y(x_0) = y_0$. Cette fonction est dite solution du problème de Cauchy associé à l'équation $(E_{n,1})$ et à la condition initiale $y(x_0) = y_0$.

1.3 Et les cas non normalisés?

On revient à l'équation générale (E_1)

$$\alpha y' + \beta y = \gamma. \tag{E_1}$$

Méthode 9. On résout alors en fonction des points d'annulation de α .

- Si la fonction α ne s'annule pas sur J; alors, on écrite l'équation équivalente $y' + \frac{\beta}{\alpha}y = \frac{\gamma}{\alpha}$ et on se ramène au cas normalisé.
- Si la fonction α s'annule un nombre fini de fois, on note alors $a_1 < a_2 < \cdots < a_n$ les points d'annulation dans l'ordre croissant. On résout alors l'équation sur chacun des sous-intervalles $]a_i; a_{i+1}[$ en normalisant. Il faut cependant faire attention au raccordement. La solution globale doit être dérivable sur l'intervalle J, en particulier en chacun des points a_i ; ce qui peut engendrer des contraintes fortes. Il peut arriver dans ce cas qu'aucune solution n'existe.
- Si la fonction α s'annule en un nombre infini de points bon courage!

2 Équations différentielles linéaire d'ordre 2 à coefficients constants

2.1 Cas homogène à coefficients constant

Pour les équations du second ordre, nous nous contenterons d'étudier le cas des équations dites à coefficients constants. Ceci est résumé dans les notations suivantes.

Notation 10. Soit $(a, b, c) \in \mathbb{K}^3$ trois scalaires avec $a \neq 0$ ainsi que J un intervalle de \mathbb{R} . On considère également δ une fonction continue sur J et à valeurs dans \mathbb{K} . On s'intéresse alors à l'équation différentielle suivante :

$$ay'' + by' + cy = \delta. (E_2)$$

C'est-à-dire qu'une fonction y sera dite solution de (E_2) si elle est deux fois dérivable et vérifie $\forall x \in J$, $ay''(x) + by'(x) + cy(x) = \delta(x)$.

On notera également l'équation homogène associée :

$$ay'' + by' + cy = 0. (E_{h,2})$$

Lemme 11. Soit y_1 et y_2 deux solutions de l'équation homogène $(E_{h,2})$. Alors, pour tout couple $(\lambda, \mu) \in \mathbb{K}^2$, la fonction $\lambda y_1 + \beta y_2$ est solution de l'équation homogène $(E_{h,2})$.

2.1.1 Résolution complexe

On suppose pour le moment que $\mathbb{K} = \mathbb{C}$ et donc que l'on cherche des solutions qui sont des fonctions définies sur J à valeurs dans \mathbb{C} .

Théorème 12 (Résolution de l'équation homogène de second ordre, version complexe). On note S_h l'ensemble des solutions de l'équation homogène $(E_{h,2})$.

On note également $\Delta = b^2 - 4ac$ et on s'intéresse à l'équation caractéristique $az^2 + bz + c = 0$ d'inconnue $z \in \mathbb{C}$. La résolution de l'équation différentielle $(E_{h,2})$ dépend du nombre de solutions de l'équation caractéristique. Précisément :

— Si $\Delta \neq 0$, alors l'équation caractéristique admet deux solutions distinctes que l'on note r_1 et r_2 . Dans ce cas, l'ensemble des solutions de l'équation différentielle $(E_{h,2})$ est donné par :

$$S_h = \left\{ \begin{array}{ccc} J & \to & \mathbb{C} \\ x & \mapsto & \lambda \exp(r_1 x) + \mu \exp(r_2 x) \end{array} \middle| (\lambda, \mu) \in \mathbb{C}^2 \right\}.$$

— Si $\Delta = 0$, alors l'équation caractéristique admet une unique solution que l'on note r_0 . Dans ce cas, l'ensemble des solutions de l'équation différentielle $(E_{h,2})$ est donné par :

$$S_h = \left\{ \begin{array}{ccc} J & \to & \mathbb{C} \\ x & \mapsto & \lambda \exp(r_0 x) + \mu x \exp(r_0 x) \end{array} \middle| (\lambda, \mu) \in \mathbb{C}^2 \right\}.$$

2.1.2 Résolution réelle

Dans ce cas, on suppose que $\mathbb{K} = \mathbb{R}$ et on cherche des solutions réelles. Évidemment, il faut adapter légèrement ce qui précède pour tenir compte du cas où l'équation caractéristique n'admet aucune solution.

Théorème 13 (Résolution de l'équation homogène de second ordre, version réelle). On note S_h l'ensemble des solutions de l'équation homogène $(E_{h,2})$.

On note également $\Delta = b^2 - 4ac$ et on s'intéresse à l'équation caractéristique $az^2 + bz + c = 0$ d'inconnue $z \in \mathbb{R}$. La résolution de l'équation différentielle $(E_{h,2})$ dépend du nombre de solutions de l'équation caractéristique. Précisément :

— Si $\Delta > 0$, alors l'équation caractéristique admet deux solutions réelles distinctes que l'on note r_1 et r_2 . Dans ce cas, l'ensemble des solutions de l'équation différentielle $(E_{h,2})$ est donné par :

$$S_h = \left\{ \begin{array}{ccc} J & \to & \mathbb{R} \\ x & \mapsto & \lambda \exp(r_1 x) + \mu \exp(r_2 x) \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right\}.$$

— Si $\Delta = 0$, alors l'équation caractéristique admet une unique solution que l'on note r_0 . Dans ce cas, l'ensemble des solutions de l'équation différentielle $(E_{h,2})$ est donné par :

$$S_h = \left\{ \begin{array}{ccc} J & \to & \mathbb{R} \\ x & \mapsto & \lambda \exp(r_0 x) + \mu x \exp(r_0 x) \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right\}.$$

— Si $\Delta < 0$, alors l'équation caractéristique n'admet aucune solution réelle. Elle admet en revanche deux solutions complexes conjuguées. On note alors r_+ la solution de partie imaginaire positive ainsi que $s = \text{Re}(r_+)$ et $\omega = \text{Im}(r_+)$. Dans ce cas, l'ensemble des solutions de l'équation différentielle $(E_{h,2})$ est donné par :

$$S_h = \left\{ \begin{array}{ccc} J & \to & \mathbb{R} \\ x & \mapsto & \lambda \exp(sx)\cos(\omega x) + \mu \exp(sx)\sin(\omega x) \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right\}.$$