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Colles semaine 14

En bref

� Introduction à l'analyse asymptotique : notation un = o(wn) ; un = O(wn) et un ∼ wn.
� Traduction des résultats de croissances comparées connus dans ce nouveau formalisme.
� Extension pour les fonctions.
� Équivalence entre la dérivabilité d'une fonction et l'existence d'un développement limité d'ordre 1.
� Formules de Taylor-Young.
� Calculs pratiques de développements limités par produit, composition, factorisation, primitives,

etc.
� Exemples de développements asymptotiques.

Liste de questions de cours

Cette semaine, en guise de questions de cours, chaque étudiant citera deux développements limités
(choix du colleur) parmi ceux à connaître :

sin, cos, exp, ch, sh, 1
1±x , (1 + x)α , arctan à l'ordre quelconque.

1√
1+x

et
√
1 + x à l'ordre 2 et tan à l'ordre 4.

La plus grande sévérité sera de mise en cas d'erreurs sur les développements limités.

Note aux colleurs

� J'ai encore à peine eu le temps de commenter la position relative d'une courbe et de sa tangente
en expliquant le rôle du signe du terme suivant le terme linéaire dans le développement limité.
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En détail

Analyse asymptotique

Reprise du programme précédent plus développements limités à tout ordre :

0.1 Formule de Taylor

Théorème 1 (Formule de Taylor-Young). Soit a un réel et f une fonction de classe C∞ sur un

intervalle I d'intérieur non vide contenant 0. Alors, pour tout x ∈ I,

f(a+ x) =
x→0

n∑
k=0

xk

k!
f (k)(a) + o(xn).

Application 2. Voici une série de développement limités en zéro classiques et à connaître :

exp(x) =
x→0

1 + x+
x2

2!
+ · · ·+ xn

n!
+ o(xn)

cos(x) =
x→0

1− x2

2!
+
x4

4!
+ · · ·+ (−1)n x2n

(2n)!
+ o(x2n+1)

sin(x) =
x→0

x− x3

3!
+
x5

5!
+ · · ·+ (−1)n x2n+1

(2n+ 1)!
+ o(x2n+2)

ln(1 + x) =
x→0

x− x2

2
+ · · ·+ (−1)n−1x

n

n
+ o(xn)

(1 + x)α =
x→0

1 + αx+
α(α− 1)

2!
x2 + · · ·+ α(α− 1) · · · (α− n+ 1)

n!
xn + o(xn) , (pour α ∈ R) ,

en particulier :

1

1− x
=
x→0

1 + x+ x2 + · · ·+ xn + o(xn)

1

1 + x
=
x→0

1− x+ x2 + · · ·+ (−1)nxn + o(xn)

√
1 + x =

x→0
1 +

1

2
x− 1

8
x2 + · · ·+ (−1)n−1 1× 3× · · · × (2n− 3)

2× 4× · · · × (2n)
xn + o(xn)

=
x→0

1 +
1

2
x− 1

8
x2 + · · ·+ (−1)n−1

(
2n
n

)
(2n− 1)22n

xn + o(xn)

1√
1 + x

=
x→0

1− 1

2
x+

3

8
x2 + · · ·+ (−1)n 1× 3× · · · × (2n− 1)

2× 4× · · · × (2n)
xn + o(xn)

=
x→0

1− 1

2
x+

3

8
x2 + · · ·+ (−1)n

(
2n
n

)
22n

xn + o(xn)

0.1.1 Autres considérations pratiques

Proposition 3. Si une fonction est paire (resp. impaire) alors la partie régulière de son développement

limité en zéro est un polynôme pair (resp. impair). C'est-à-dire que ce polynôme ne contient que des

monômes de degré pair (resp. impair).

Corollaire 4. Si f admet un développements limités de type f(x) =
x→0

2n+2∑
k=0

akx
k + o(x2n+2), alors les

parties paires et impaires de f admettent des développements limités donnés par :

f(x) + f(−x)
2

=
x→0

a0 + a2x
2 + a4x

4 + · · ·+ a2nx
2n + o(x2n+1)

f(x)− f(−x)
2

=
x→0

a1x+ a3x
3 + a5x

5 + · · ·+ a2n+1x
2n+1 + o(x2n+2)
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0.2 Manipulations de développements limités

Proposition 5 (On peut primitiver les DL). Soit f admettant un développement limité d'ordre n en

zéro donné par f(x) =
x→0

n∑
k=0

akx
k + o(xn).

Alors toute primitive de de f notée F admet également un développement limité d'ordre n + 1
donné par :

F (x) =
x→0

F (0) +
n∑
k=0

akx
k+1

k + 1
+ o(xn+1).

Attention ! Ne pas oublier le terme constant F (0).

Proposition 6 (Application d'un Dl en xp). Soit f une fonction admettant un développement limité

en 0 de type : f(x) =
x→0

n∑
k=0

akx
k + o(xn).

Alors pour tout entier p ∈ N∗, on a un développement limité d'ordre np de f(xp) donné par :

f(xp) =
x→0

n∑
k=0

akx
kp + o(xnp).

Application 7. On en déduit immédiatement le développement limité d'arctangente (en primitivant
x 7→ 1

1+x2
)

arctan(x) =
x→0

x− x3

3
+
x5

5
− · · ·+ (−1)n x

2n+1

2n+ 1
+ o(x2n+2)

En raisonnant par identi�cation des coe�cients, on trouve également un développement de tangente
à la précision de son choix. L'ordre 4 est à connaître :

tan(x) =
x→0

x+
x3

3
+ o(x4)

Attention ! On ne peut pas en général dériver un DL

0.3 Méthode pour calculer un développement limité de composées et de produit

.

Méthode 8 (Produit de DL). Si f et g admettent chacune en zéro un développements limités d'ordre
n de type f(x) =

x→0
P (x) + xn et g(x) =

x→0
Q(x) + xn ; alors l'égalité f(x)g(x) =

x→0
P (x)Q(x) + xn est

correcte mais en général absolument stupide !
Pour avoir la version utile de cette égalité, il convient de tronquer tous les termes de degré supérieur

ou égal à) n+ 1 dans le produit de polynômes PQ.

Méthode 9 (Composition de DL). Supposons que l'on veuille calculer un développement limité de la
fonction (f ◦ g) au voisinage de zéro.

i) On véri�e que lim
x→0

g(x) = 0. Sinon, si la limite est �nie égale à `, on pose alors g̃ = g − ` qui a
bien une limite nulle et on se ramène à cette hypothèse. Si g n'a pas de limite �nie en 0, on est
probablement en train de faire n'importe quoi.

ii) On suppose donc dorénavant que lim
x→0

g(x) = 0.

iii) On cherche un entier p > 1 tel que g(x) =
x→0

O(xp). On en déduira que o
(
g(x)n

)
= o(xnp) pour

tout entier n.

iv) On choisit alors l'entier n tel que o(xnp) donne la précision voulue. Par exemple, pour avoir un
développement d'ordre q de f ◦ g, on choisira n = q

p arrondi à l'entier supérieur.
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v) On écrit alors un développement limité de f de type f(x) =
x→0

n∑
k=0

akx
k + o(xn) pour ce n choisi.

vi) On calcule un développement limité à l'ordre voulu de chaque terme g(x)k apparaissant dans la
somme précédente. On élude donc tous les termes super�us.

vii) On recombine le tout et on conclut.
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