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Colles semaine 16

En bref

� Bornes supérieures et inférieures. Partie entière

� Suites arithmético-géométrique.

� Suites récurrentes linéaires d'ordre 2.

� Dé�nition des limites de suites (réelles et complexes).

� Propriété algébrique des limites.

� Cas des sous-suites (u2n)n∈N et (u2n+1)n∈N.

Exemples non exhaustifs de questions de cours

Les étudiantes et étudiants se présentent à la colle en sachant répondre rapidement et précisément

à TOUTES les questions suivantes. Ils seront interrogés sur l'une d'entre elles.

� Montrer que la limite d'une suite si elle existe est unique (On se limitera au cas des limites

�nies).

� Montrer que les suites convergentes sont bornées.

� Citer et montrer la propriété de passage à la limite des inégalités.

� Montrer que si une suite u converge vers ` > 0 ; alors à partir d'un certain rang un > 0.
� Montrer qu'une suite u converge si et seulement si les deux sous-suites (u2n)n∈N et (u2n+1)n∈N

convergent vers la même limite.

Note aux colleurs

� Je n'ai pas encore traité d'exemple de suites récurrentes d'ordre 2 avec second membre. Mais

on peut très bien poser de telles questions en guidant la démarche.

� En ce qui concerne la dé�nition formelle de suite, il est di�cile de trouver des exercices à la

portée des étudiants aussi tôt dans le chapitre. C'est pourquoi on n'hésitera pas à interroger

encore sur l'analyse asymptotique.
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En détail

1 Suites récurrentes linéaires

1.1 Cas des suites récurrentes d'ordre 1

On se donne deux réels a et b �xés et on s'intéresse à une suite u véri�ant l'équation de récurrence :

∀n ∈ N, un+1 = aun + b (E1)

� Si a = 1, il s'agit d'une suite arithmétique.

� Si b = 0, il s'agit d'une suite géométrique.

� Si a 6= 1 et b 6= 0, on dit que c'est une suite arithmético-géométrique et on utilise le théorème

suivant.

Théorème 1. Soit u une suite véri�ant (E1) avec a 6= 1. Alors il existe une unique valeur de α telle

que la suite w := (u − α) soit une suite géométrique de raison a. De plus α est l'unique point �xe de

la relation de récurrence (E1). C'est-à-dire que α = aα+ b.

1.2 Cas des suites récurrentes d'ordre 2

On se donne trois scalaires (complexes ou réels) a, b et c �xés avec a 6= 0 et on s'intéresse à une

suite u véri�ant l'équation de récurrence :

∀n ∈ N, aun+2 + bun+1 + cun = 0 (E2)

On notera Ea,b,c l'ensemble des suites véri�ant cette relation.

Lemme 2 (Stabilité par combinaison linéaire). L'ensemble Ea,b,c est stable par combinaison linéaire.

C'est-à-dire que pour toutes suites u ∈ Ea,b,c et v ∈ Ea,b,c, on a :

∀(α, β) ∈ C2, (αu+ βv) ∈ Ea,b,c.

Lemme 3 (La suite u est déterminée par ses deux premiers termes). Soit (α, β) ∈ K2. Il existe une et

une unique suite u véri�ant les trois conditions suivantes :


u ∈ Ea,b,c
u0 = α

u1 = β

.

Théorème 4 (Résolution de E2, version complexe). On appelle équation caractéristique de E2, l'équa-

tion ar2 + br + c = 0 d'inconnue r ∈ C. On note ∆ = b2 − 4ac. On suppose également que b et c ne

sont pas simultanément nul (c'est un cas particulier légèrement problématique.)

� Si l'équation caractéristique admet deux solutions dans C distinctes, notées r1 et r2 (ce qui

correspond donc au cas où ∆ 6= 0), alors,

Ea,b,c =
{

(λ1r
n
1 + λ2r

n
2 )n∈N ; (λ1, λ2) ∈ C2

}
.

� Si l'équation caractéristique admet une solution et une seule dans C, notée r0 (ce qui revient à

∆ = 0), alors,
Ea,b,c =

{
(λ1r

n
0 + λ2nr

n
0 )n∈N ; (λ1, λ2) ∈ C2

}
.

Théorème 5 (Résolution de E2, version réelle). On suppose que a, b et c sont réels avec a 6= 0 et on

s'intéresse aux suites réelles de Ea,b,c. On appelle équation caractéristique de E2, l'équation ar
2+br+c =

0 d'inconnue r ∈ R. On note ∆ = b2−4ac. On suppose également que b et c ne sont pas simultanément

nul (c'est un cas particulier légèrement problématique.)

� Si l'équation caractéristique admet deux solutions réelles distinctes, notées r1 et r2 (ce qui cor-

respond donc au cas où ∆ > 0), alors,

Ea,b,c =
{

(λ1r
n
1 + λ2r

n
2 )n∈N ; (λ1, λ2) ∈ R2

}
.
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� Si l'équation caractéristique admet une solution et une seule dans R, notée r0 (ce qui revient à

∆ = 0), alors,
Ea,b,c =

{
(λ1r

n
0 + λ2nr

n
0 )n∈N ; (λ1, λ2) ∈ R2

}
.

� Si l'équation caractéristique n'a pas de solution réelle (c'est-à-dire ∆ < 0), alors, en notant

r = ρeiθ une des deux solutions complexes conjuguées de l'équation caractéristique (avec ρ ∈ R∗+
et θ ∈ R) on a :

Ea,b,c =
{

(ρn(λ1 cos(nθ) + λ2 sin(nθ)))n∈N ; (λ1, λ2) ∈ R2
}
.

Remarque 6. Bien sûr toute suite réelle peut être vue comme une suite complexe. On peut donc

utiliser la résolution en version complexe, puis extraire parmi les solutions les suites qui sont à valeurs

réelles. Ceci peut demander quelques calculs et ré�exions non immédiates. Aussi est-il utile de connaître

directement la formule précédente donnant tout de suite les solutions réelles.

2 Limites de suites

2.1 Suites convergentes

2.1.1 Dé�nition formelle de limite

Dé�nition 7 (Convergence d'une suite vers un réel). On dit qu'une suite réelle u converge vers un

réel ` ou encore qu'elle admet ` pour limite si :

∀ε > 0, ∃N ∈ N, ∀n ∈ N, (n > N)⇒ |un − `| 6 ε. (Plim)

On note alors lim
n→∞

un = ` ou encore un
n→∞−−−→ `.

Attention ! La question de l'existence d'une limite pour une suite donnée est, en générale délicate. On

n'emploiera donc jamais la notation lim
n→∞

un avant d'avoir prouvé ou supposé que cette limite existe.

Dé�nition 8. Soit P(x) un prédicat, on dit que la suite u véri�e P(un) à partir d'un certain rang

(parfois abrégé en APCR) s'il existe un entier N ∈ N tel que ∀n ∈ N, (n > N) =⇒ P(un). Autrement

dit la propriété P(un) est vraie pour tous les entiers n sauf éventuellement un nombre �ni d'entre eux.

On comprendra donc que, dans cette écriture, la variable n est encore une fois muette

Lemme 9 (Traduction de la dé�nition de limite). Soit u une suite et ` un réel. Alors la suite u converge

vers ` si et seulement si pour tout intervalle I ouvert contenant `, les réels un appartiennent à I à

partir d'un certain rang.

2.1.2 Quelques conséquences théoriques

Voici une liste de cinq propriétés qui se montrent à partir de la dé�nitions formelle de limite. Vous

devez savoir faire cela et cela est une excellente illustration du genre de preuves que l'on peut exiger

de vous.

Proposition 10. Si une suite réelle converge vers un réel, alors elle est bornée.

Proposition 11. Si une suite converge vers une limite, alors cette limite est unique.

Proposition 12. Soit a ∈ R. Si une suite u converge vers un réel ` > a, alors à partir d'un certain

rang un > 0.

Remarque 13. Il est crucial dans la proposition précédente que ` soit strictement supérieur à a.
Cherchez un contre-exemple lorsque ` = a.

Proposition 14 (Passage à la limite des inégalités). Soit a un réel et u une suite véri�ant ∀n ∈
N, un < a. Alors, si la suite u converge vers `, on a l'inégalité large suivante : ` 6 a.
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Proposition 15 (Caractérisation de la convergence par les sous-suites de rang pair et impair). Une

suite (un)n∈N converge si et seulement si les deux suites (u2n)n∈N et (u2n)n∈N convergent vers la même

limite.

Un étudiant de PTSI doit savoir démontrer les propriétés 10 à 15.

Remarque 16. La proposition 15 peut également être utilisé pour prouver la divergence d'une suite par

contraposition. Par exemple, il est aisé de montrer avec cette proposition que la suite (−1)nn∈N diverge.

2.2 Limites in�nies pour les suites réelles

2.2.1 Dé�nitions

Dé�nition 17 (Limites in�nies). On dit qu'une suite réelle u admet pour limite +∞ si :

∀A ∈ R, ∃N ∈ N, ∀n ∈ N, (n > N)⇒ un > A.

On dit qu'une suite u admet pour limite −∞ si :

∀A ∈ R, ∃N ∈ N, ∀n ∈ N, (n > N)⇒ un 6 A.

Remarque 18. La terminologie de � suites convergentes � est réservée à celles qui admettent des limites

�nies. Les suites admettant des limites in�nies sont dites divergentes, tout comme celles qui n'admettent

pas de limites.

2.2.2 Propriétés élémentaires

Nous reprenons les propriétés 10 à 15 et nous les généralisons au cas des limites éventuellement

in�nies.

Proposition 19. Si une suite réelle admet une limite (�nie ou in�nie), alors cette limite est unique.

Proposition 20. Soit u une suite admettant +∞ pour limite. Alors u est minorée et n'est pas majorée.

De même si u admet −∞ pour limite, alors elle est majorée mais pas minorée.

Thèmes de ré�exions 21. Peut-on trouver une suite u qui n'est pas majorée et qui ne tend pas vers

+∞ ? Qu'en déduire quant à la réciproque de la proposition précédente ?

Proposition 22. Si une suite u tend vers +∞ , alors à partir d'un certain rang un > 0.

Proposition 23 (Passage à la limite des inégalités). Soit a un réel et u une suite véri�ant ∀n ∈
N, un < a. On suppose également que la suite u admette une limite ` (�nie ou in�nie) ; alors, ou bien

` = −∞ ou bien ` est un réel �ni véri�ant : ` 6 a.

Proposition 24 (Caractérisation de la limite par les sous-suites de rang pair et impair). Une suite

(un)n∈N admet une limite (�nie ou in�nie) si et seulement si les deux suites (u2n)n∈N et (u2n)n∈N
admettent une limite commune.

2.3 Règles de calculs de limites

2.3.1 Quelques limites connues

Le cours de Terminale nous donne plusieurs résultats de limites.

Proposition 25. Les limites suivantes sont des résultats à connaître.

i) Pour tout α > 0, nα
n→∞−−−→ +∞.

ii) Pour tout β < 0, nβ
n→∞−−−→ 0.

iii) en
n→∞−−−→ +∞ et e−n

n→∞−−−→ 0.

iv) ln(n)
n→∞−−−→ +∞

v) Pour a un réel �xé, la suite de terme général an :
� diverge vers +∞ si a > 1 ;
� converge vers 1 si a = 1 ;
� converge vers 0 si a ∈ ]−1 ; 1[ ;
� n'a pas de limite si a 6 −1.
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2.3.2 Sommes et produits

Proposition 26 (Sommes de limites). Soit u et v deux suites admettant pour limites respectives `1 et

`2 �nies ou in�nies. Le tableau suivant résume ce que l'on peut dire de la limite de la suite u+ v.

`1 ∈ R +∞ −∞
`2 ∈ R `1 + `2 +∞ −∞
+∞ +∞ +∞ F.I.

−∞ −∞ F.I. −∞

Proposition 27 (Produit de limites). Soit u et v deux suites admettant pour limites respectives `1 et

`2 �nies ou in�nies. Le tableau suivant résume ce que l'on peut dire de la limite de la suite uv.

`1 ∈ R∗+ `1 ∈ R∗− `1 = 0 +∞ −∞
`2 ∈ R∗+ `1`2 `1`2 0 +∞ −∞
`2 ∈ R∗− `1`2 `1`2 0 −∞ +∞
`2 = 0 0 0 0 F.I. F.I.

`2 = +∞ +∞ −∞ F.I. +∞ −∞
`2 = −∞ −∞ +∞ F.I. −∞ +∞

Proposition 28 (Quotient de limites). Soit u et v deux suites admettant pour limites respectives `1
et `2 �nies ou in�nies. Le tableau suivant résume ce que l'on peut dire de la limite de la suite u

v . On

supposera bien sûr que vn 6= 0 à partir d'un certain rang.

`1 ∈ R∗+ `1 ∈ R∗− `1 = 0+ `1 = 0− +∞ −∞
`2 ∈ R∗+ `1

`2
`1
`2

0+ 0− +∞ −∞
`2 ∈ R∗− `1

`2
`1
`2

0− 0+ −∞ +∞
`2 = 0+ +∞ −∞ F.I. F.I. +∞ −∞
`2 = 0− −∞ +∞ F.I. F.I. −∞ +∞
`2 = +∞ 0+ 0− 0+ 0− F.I. F.I.

`2 = −∞ 0− 0+ 0− 0+ F.I. F.I.

Attention ! La notation 0+ veut dire que la suite converge vers zéro tout en restant positive à partir

d'un certain rang. En règle générale si le dénominateur tend vers 0 sans que l'on puisse déterminer

son signe et que le numérateur a une limite non-nulle, alors on a a�aire à une forme indéterminée. Le

quotient peut n'avoir aucune limite dans ce cas ! Exemple de 1
(−1)ne−n .

2.4 Brève extension aux suites complexes

Dé�nition 29. Soit (zn)n∈N une suite complexe et ` ∈ C. On dit que la suite z converge si la suite

réelle (|zn − `|)n∈N converge vers 0.

Remarque 30. Il n'existe pas de notion de limite in�nie pour les suites complexes.

Proposition 31 (Caractérisation de la convergence par les parties réelles et imaginaires). Soit (zn)n∈N
une suite complexe. Cette suite converge si et seulement si chacune des suites réelles (Re(zn))n∈N et

(Im(zn))n∈N converge. Dans ce cas, on a lim
n→∞

zn = lim
n→∞

Re(zn) + i lim
n→∞

Im(zn).

On rappelle la dé�nition des suites complexes bornées.

Dé�nition 32. Soit (zn)n∈N une suite complexe. On dit qu'elle est bornée si la suite réelle (|zn|)n∈N
est bornée.

Lemme 33. Si une suite (zn) converge vers un complexe `, alors |zn|
n→∞−−−→ |`|. La réciproque est

fausse en général.

Thèmes de ré�exions 34. Cherchons un contre-exemple qui invalide la réciproque du lemme précé-

dent.
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Exemple 35 (Suites géométriques complexes). Pour tout complexe q �xé, la suite complexe de terme

général un = qn :

� converge vers 0 si |q| < 1 ;
� converge vers 1 si q = 1 ;
� n'a pas de limite et reste bornée si |q| = 1 et q 6= 1 ; (Ce point est plus délicat à prouver que le

reste).

� n'a pas de limite et diverge en module (c'est-à-dire |un|
n→∞−−−→ +∞) si |q| > 1.

Thèmes de ré�exions 36. Cherchons une valeur q de module 1 pour laquelle on sait prouver que la

suite de terme général qn diverge.
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