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Colles semaine 17

En bref

� Suites arithmético-géométrique.
� Suites récurrentes linéaires d'ordre 2.
� Dé�nition des limites de suites (réelles et complexes).
� Propriété algébrique des limites.
� Propriétés prouvant la convergence : suites adjacentes, théorème de limite monotone et théorème

des gendarmes.
� Cas des sous-suites (u2n)n∈N et (u2n+1)n∈N.
� Exemples d'études de suites récurrentes de type un+1 = f(un) :

� Illustration de l'intérêt de la recherche d'intervalle stable par f .
� Illustration de l'intérêt de l'hypothèse de croissance de f permettant de prouver la monotonie

de u.
� Illustration de l'intérêt d'étudier le signe de f(x)− x pour étudier la monotonie de u.
� Illustration de l'intérêt d'étudier séparément (u2n) et (u2n+1) lorsque f est décroissante sur

un intervalle stable.

Exemples non exhaustifs de questions de cours

Les étudiantes et étudiants se présentent à la colle en sachant répondre rapidement et précisément

à TOUTES les questions suivantes. Ils seront interrogés sur l'une d'entre elles.

� Montrer que la limite d'une suite si elle existe est unique (On se limitera au cas des limites
�nies).

� Montrer que les suites convergentes sont bornées.
� Citer et montrer la propriété de passage à la limite des inégalités.
� Montrer que si une suite u converge vers ` > 0 ; alors à partir d'un certain rang un > 0.
� Montrer qu'une suite u converge si et seulement si les deux sous-suites (u2n)n∈N et (u2n+1)n∈N

convergent vers la même limite.
� Citer et prouver le théorème des gendarmes.
� Dé�nir la notion de suites adjacentes et prouver que deux suites adjacentes sont convergentes.

Note aux colleurs

� Concernant les suites récurrentes, le seul résultat au programme est celui a�rmant que si u
converge vers `, si ∀n ∈ N, un+1 = f(un) et si f est continue en `, alors ` est un point �xe de
f . Tout le reste doit être redémontré. C'est pourquoi on veillera à guider su�samment l'énoncé.
Néanmoins on a déjà passé pas mal de temps à détailler toutes les méthodes possibles.

� À partir de cette semaine et jusqu'à la �n de l'annnée, on commencera ou terminera la colle en
demandant à chaque étudiant de citer un développement limité au programme. On sanctionnera
sévèrement en cas d'échec.
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En détail

1 Suites récurrentes linéaires

Reprise du programme précédent

2 Limites de suites

Reprise du programme précédent.

3 Prouver l'existence de limites

3.1 Utilisation de la monotonie pour les suites réelles

Théorème 1 (Théorème de limite monotone). Soit u une suite croissante de réels. Alors la suite u
admet une limite. De plus :

� Soit la suite u est majorée et alors elle converge vers une limite �nie.

� Soit la suite u n'est pas majorée et alors sa limite vaut +∞.

Exercice 2. Adapter ce théorème au cas des suites décroissantes.

Ce théorème (ou plutôt sa preuve) a en plus une conséquence très utile pour la détermination des
bornes supérieures.

Application 3 (Caractérisation séquentielle des bornes supérieures). Soit A une partie de R et s un
réel. Alors il est équivalent de dire que s et la borne supérieure de A ou que :{

s majore A

et Il existe une suite (an)n∈N d'éléments de A véri�ant lim
n→∞

(an) = s.

Théorème 4 (Suites adjacentes). Soit u et v deux suites réelles. On dit que u et v sont adjacentes si :

� L'une des deux suites est croissante.

� L'autre suite est décroissante.

� La suite u− v converge vers 0.

Dans ce cas, u et v sont convergentes et convergent vers la même limite `. De plus,

� Si la suite u est croissante, ∀n ∈ N, un 6 ` 6 vn.
� Si la suite u est décroissante, ∀n ∈ N, vn 6 ` 6 un.

Application 5. Soit x un réel. Montrer que les suites dé�nies par un = b10nxc
10n et vn = un + 1

10n sont
adjacentes.

Thèmes de ré�exions 6. Pour x = π, que représentent les suites u et v de l'application précédente.

Corollaire 7. Pour tout réel x, il existe une suite de rationnels convergeant vers x. On dit que l'en-

semble des rationnels est dense dans R.

3.2 Par encadrement, pour les suites réelles

Théorème 8 (Théorème des gendarmes). Soit u, v et w trois suites réelles. On suppose que

� à partir d'un certain rang un 6 vn 6 wn,

� et u et w converge toutes deux vers la même limite `.
Alors la suite v est convergente et lim

n→∞
vn = `.

On peut également adapter ce théorème pour le cas des limites in�nies.

Théorème 9 (Variante DU gendarme). Soit u et v deux suite réelles véri�ant un 6 vn à partir d'un

certain rang. Alors :

� si la suite u diverge vers +∞, il en est de même pour la suite v.
� si la suite v diverge vers −∞, il en est de même pour la suite u.
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3.3 Cas des suites complexes

Proposition 10 (Version complexe du théorème des gendarmes). Soit z une suite complexe et ` ∈ C.
S'il existe une suite réelle x véri�ant à partir d'un certain rang |zn − `| 6 xn et xn

n→∞−−−→ 0 ; alors
zn

n→∞−−−→ `.

4 Éléments d'étude de suites récurrentes

Dans toute cette section, nous nous �xerons une fonction dé�nie sur un intervalle I, à valeurs dans
R et nous étudierons les suites u qui véri�ent la relation :

∀n ∈ N, un+1 = f(un) (Recf )

Attention ! Tout doit être redémontré dans le contexte de l'exercice. Les théorèmes suivants (à l'ex-
ception du corollaire 15 ne �gurent pas au programme o�ciel.

4.1 À propos de la bonne dé�nition de la suite

Dé�nition 11 (Ensembles stables par une fonction). Soit f une fonction dé�nie sur un intervalle I à
valeur dans R. On dit qu'un sous-ensemble A de I est stable par f s'il véri�e ∀x ∈ A, f(x) ∈ A.
Remarque 12. On peut traduire cette dé�nition à l'aide de la notion d'image directe. En reprenant les
notations de la dé�nition précédente, un ensemble A est stable par f si et seulement si f(A) ⊂ A.

Proposition 13. Si A est un ensemble stable par f et si u0 ∈ A, alors la suite u dé�nie par la

relation (Recf ) existe bien pour toute valeur de n ∈ N.

4.2 À propos des limites possibles

Théorème 14 (Admis provisoirement). Si f est une fonction à valeurs réelles dé�nie sur un intervalle

I et que u est une suite d'éléments de I convergente vers un réel ` ∈ I, si de plus la fonction f est

continue en `, alors la suite n 7→ f(un) est également convergente et sa limite vaut f(`).

Corollaire 15 (La limite éventuelle de u est un point �xe). Si la suite u converge vers un point de I
et que f est continue sur I, alors sa limite ` est un point �xe de f . C'est-à-dire f(`) = `.

Attention ! Ces théorèmes sont inutiles tant qu'on n'a pas prouvé l'existence d'une limite pour u.

4.3 Méthode avec une fonction f croissante

Méthode 16. Si f est croissante sur un intervalle stable I et si u0 ∈ I, alors on peut montrer par
récurrence que la suite u est monotone.

4.4 Méthode avec le signe de f − Id

Méthode 17. Si sur un intervalle stable I, on a ∀x ∈ I, f(x) − x > 0 et si ∀n ∈ N, un ∈ I, alors on
peut montrer que la suite u est croissante.

4.5 Cas des fonctions décroissantes

Méthode 18. Si f est décroissante sur un intervalle stable I et si u0 ∈ I, alors on peut montrer que
chacune des deux sous-suites (u2n)n∈N et (u2n+1)n∈N est monotone et les monotonies respectives sont
opposées.
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