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Colles semaine 18

En bref

� Dé�nition des limites de suites (réelles et complexes).
� Propriété algébrique des limites.
� Propriétés prouvant la convergence : suites adjacentes, théorème de limite monotone et théorème

des gendarmes.
� Cas des sous-suites (u2n)n∈N et (u2n+1)n∈N.
� Exemples d'études de suites récurrentes de type un+1 = f(un) :

� Illustration de l'intérêt de la recherche d'intervalle stable par f .
� Illustration de l'intérêt de l'hypothèse de croissance de f permettant de prouver la monotonie

de u.
� Illustration de l'intérêt d'étudier le signe de f(x)− x pour étudier la monotonie de u.
� Illustration de l'intérêt d'étudier séparément (u2n) et (u2n+1) lorsque f est décroissante sur

un intervalle stable.
� Dé�nition des limites de fonctions
� Continuité des fonctions, propriétés globales.

Exemples non exhaustifs de questions de cours

Les étudiantes et étudiants se présentent à la colle en sachant répondre rapidement et précisément

à TOUTES les questions suivantes. Ils seront interrogés sur l'une d'entre elles.

� Citer et prouver le théorème des gendarmes (pour des suites, ou pour des fonctions).
� Dé�nir la notion de suites adjacentes et prouver que deux suites adjacentes sont convergentes.

� Montrer que si la suite u véri�e

{
u0 = 3

∀n ∈ N, un+1 =
√
2 + un

, alors la suite u est minorée par

2 et converge en décroissant vers 2.
� Citer le théorème de composition de limites pour la composée d'une suite et d'une fonction. En

déduire que si une suite u véri�ant ∀n ∈ N, un+1 = f(un) converge vers ` et que f est continue
en `, alors f(`) = `.

Note aux colleurs

� Concernant les suites récurrentes, le seul résultat au programme est celui a�rmant que si u
converge vers `, si ∀n ∈ N, un+1 = f(un) et si f est continue en `, alors ` est un point �xe de
f . Tout le reste doit être redémontré. C'est pourquoi on veillera à guider su�samment l'énoncé.
Néanmoins on a déjà passé pas mal de temps à détailler toutes les méthodes possibles.

� Jusqu'à la �n de l'année, on commencera ou terminera la colle en demandant à chaque étudiant
de citer un développement limité au programme. On sanctionnera sévèrement en cas d'échec.
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En détail

1 Éléments d'étude de suites récurrentes

Reprise du programme précédent.

2 Limites des fonctions

Dans toute cette section, I désignera un intervalle non vide de R et f : I → R désignera une
fonction dé�nie sur I à valeurs dans R. On désignera également par x0 un réel de I, ou éventuellement
une extrémité de I si I est un intervalle ouvert. Par exemple, si I = ]0 ; 1[, on s'autorisera à considérer
x0 = 0 ou x0 = 1. On notera x0 ∈ I pour signi�er ce fait.

2.1 Dé�nitions

2.1.1 Cas des limites �nies en un point

Dé�nition 1 (Limite �nie en un point). Soit I un intervalle non vide de R et f : I → R une fonction
dé�nie sur I à valeurs dans R. Soit également x0 un réel de I ou une extrémité de I, si I est un
intervalle ouvert. Par exemple, si I = ]0 ; 1[, on s'autorisera à considérer x0 = 0 ou x0 = 1.

Si ` est un réel, on dit que f admet pour limite ` en x0 si la proposition suivante est véri�ée :

∀ε > 0, ∃α ∈ R∗+, ∀x ∈ I ∩ ]x0 − α ; x0 + α[ , |f(x)− `| 6 ε.

On note dans ce cas lim
x→x0

f(x) = ` ou encore f(x)
x→x0−−−→ `.

Remarque 2. Notons que f peut admettre une limite en x0 sans être dé�nie en x0.

Remarque 3. On peut également dé�nir des limites à droite et à gauche en x0. Par exemple, en reprenant
les notations de la dé�nition 1, on dit que f admet ` pour limite à droite en x0 (On suppose alors que
x0 n'est pas la borne supérieure de I.) si :

∀ε > 0, ∃α ∈ R∗+, ∀x ∈ I ∩ [x0 ; x0 + α[ , |f(x)− `| 6 ε.

On note dans ce cas lim
x→x0
x>x0

f(x) = `.

Le lecteur généralisera comme un grand les dé�nitions de limites à gauche ou encore les dé�nitions
de limites à gauche strictes telles lim

x→x0
x<x0

f(x)

2.1.2 Cas des limites in�nies en un point

Dé�nition 4. Soit I un intervalle non vide de R et f : I → R désignera une fonction dé�nie sur I à
valeurs dans R. Soit également x0 un réel de I ou une extrémité de I.

i) On dit que f admet pour limite +∞ en x0 si la proposition suivante est véri�ée :

∀M ∈ R, ∃α ∈ R∗+, ∀x ∈ I ∩ ]x0 − α ; x0 + α[ , f(x) >M.

On note dans ce cas lim
x→x0

f(x) = +∞ ou encore f(x)
x→x0−−−→ +∞.

ii) On dit que f admet pour limite −∞ en x0 si la proposition suivante est véri�ée :

∀m ∈ R, ∃α ∈ R∗+, ∀x ∈ I ∩ ]x0 − α ; x0 + α[ , f(x) 6 m.

Remarque 5. Bien sûr, toutes ces dé�nitions, s'adaptent dans le cas des limites à gauche ou à droite,
ou à gauche strictement, etc.
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2.1.3 Cas des limites �nies en l'in�ni

Dé�nition 6 (Limite �nie en x→ +∞). Soit I un intervalle non vide de R et f : I → R désignera une
fonction dé�nie sur I à valeurs dans R. On supposera que I est un intervalle non majorée (c'est-à-dire
qu'il est de type [α ; +∞[ ou ]α ; +∞[ pour un certain réel α).

Si ` est un réel, on dit que f admet pour limite ` en +∞ si la proposition suivante est véri�ée :

∀ε > 0, ∃a ∈ R, ∀x ∈ I ∩ ]a ; +∞[ , |f(x)− `| 6 ε.

On note dans ce cas lim
x→x0

f(x) = ` ou encore f(x)
x→x0−−−→ `.

Exercice 7. Écrire la dé�nition correspondante pour les limites en x→ −∞.

2.1.4 Cas des limites in�nies en l'in�ni

Dé�nition 8 (Limite in�nie en x→ −∞). Soit I un intervalle non vide de R et f : I → R désignera
une fonction dé�nie sur I à valeurs dans R. On supposera que I est un intervalle non minorée (c'est-
à-dire qu'il est de type ]−∞ ; α] ou ]−∞ ; α[ pour un certain réel α).

On dit que f admet pour limite +∞ en x→ −∞ si la proposition suivante est véri�ée :

∀M ∈ R, ∃a ∈ R, ∀x ∈ I ∩ ]−∞ ; a[ , f(x) >M.

On note dans ce cas lim
x→x0

f(x) = +∞ ou encore f(x)
x→x0−−−→ +∞.

Exercice 9. Adapter la dé�nition précédente pour :
� La limite +∞ en x→ +∞.
� La limite −∞ en x→ +∞.
� La limite −∞ pour x→ −∞.

2.2 Propriétés des limites

Théorème 10 (Unicité de la limite). Soit x0 un réel appartenant à I ou une extrémité de I (qui

englobe le cas où x0 = ±∞). Alors, la limite éventuelle (�nie ou in�nie) de f en x0 est unique.

2.2.1 Opérations algébriques

Proposition 11. Si f et g sont deux fonctions dé�nies sur I qui admettent chacune une limite �nie

en x0 (un point de I ou une extrémité), notées respectivement `f et `g. Alors :

i) Pour tout (α, β) ∈ R2, (αf + βg) (x)
x→x0−−−→ α`f + β`g.

ii) (f(x)g(x))
x→x0−−−→ `f `g.

iii) Si `f 6= 0, alors il existe un réel α > 0 tel que f ne s'annule pas sur I ∩ ]x0 − α ; x0 + α[ et on a(
g(x)
f(x)

)
x→x0−−−→ `g

`f
.

Remarque 12. Si les limites `f et `g peuvent être in�nies, alors le théorème s'applique encore à condi-
tion de généraliser les règles vues sur les limites de suites. En particulier, certaines formes restent
indéterminées.

2.2.2 Limites et ordre

Proposition 13. Soit a ∈ R et f est une fonction de I → R et x0 un point appartenant à I ou une

extrémité. On suppose que f admet une limite (�nie ou in�nie) ` en x0 et que ` > a. Alors il existe un

voisinage de x0 sur lequel, f est strictement supérieure à a. Autrement dit :

∃α ∈ R∗+,∀x ∈ I ∩ ]x0 − α ; x0 + α[ , f(x) > a.

Remarque 14. Comme pour les suites, il est crucial que l'inégalité ` > a soit stricte.
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Proposition 15 (Passage à la limite des inégalités). Soit f et g deux fonctions dé�nies sur I et x0
un point appartenant à I ou une extrémité. On suppose que f et g admettent chacune une limite (�nie

ou in�nie) en x0, notée respectivement `f et `g. On suppose de plus que ∀x ∈ I, f(x) 6 g(x). Alors
`f 6 `g.

Remarque 16. Bien sûr, il su�rait que l'inégalité f(x) 6 g(x) soit vraie seulement sur un voisinage de
x0 et pas nécessairement sur I tout entier.

2.2.3 Composition de limites

Théorème 17 (Théorème de composition de limite (version fonctionnelle)). Soit I et J deux intervalles

de R. On se donne deux fonctions f : I → R et g : J → R. On suppose que f(I) ⊂ J , de sorte que

la composée g ◦ f est bien dé�nie. On se donne également un point x0 appartenant à I ou qui est une

extrémité de I. On suppose que f(x)
x→x0−−−→ `. On suppose également que ` appartient à J ou est une

extrémité de J et que g(y)
y→`−−→ L.

Alors la fonction g ◦ f admet une limite en x0 et (g ◦ f)(x) x→x0−−−→ L.

Remarque 18. Les valeurs de x0, ` et L de ce théorème peuvent être in�nies.

Remarque 19. Ce théorème est souvent utilisé dans le cas où ` ∈ J et que g est continue en `. Dans ce
cadre, on a L = g(`).

Théorème 20 (Composition de fonction et de suites). Soit I un intervalle de R et f : I → R. Soit
également u une suite convergeant vers une limite `. On suppose que ` appartient à I ou est une

extrémité de I. On suppose en�n que f admet pour limite L en x → `. Alors la suite n 7→ f(un)
converge vers L.

Remarque 21. Les valeurs de ` et L de ce théorème peuvent être in�nies.

Remarque 22. Ce théorème est souvent utilisé dans le cas où ` ∈ I et que f est continue en `. Dans ce
cadre, on a lim

n→∞
f(un) = f(`).

2.2.4 Prouver l'existence de limites

Théorème 23 (Théorème de limite monotone). Soit f une fonction croissante sur I et x0 un point

appartenant à I ou une extrémité.

i) La fonction f admet une limite à gauche stricte en x0 (qui peut être �nie ou +∞ si x0 est la borne

supérieure de I).

ii) La fonction f admet une limite à droite stricte en x0 (qui peut être �nie ou −∞ si x0 est la borne

inférieure de I.

iii) Si de plus x0 est un point intérieur à I, alors

lim
x→x0
x<x0

f(x) 6 f(x0) 6 lim
x→x0
x>x0

f(x).

Exercice 24. Écrire le théorème des gendarmes pour les limites de fonctions.

2.3 Résultats de croissance comparées sur les limites de fonctions

2.3.1 Limites en l'in�ni

Proposition 25 (Croissances comparées en +∞). Les limites suivantes sont à connaître. On peut in-

voquer ces résultats sur une copie sans justi�cation en précisant � par résultat de croissances comparées

classiques, on a ... �

i) Si P : x 7→
n∑
k=0

akx
k est un polynôme non constant (n > 1 et an 6= 0), alors P (x)

x→+∞−−−−→ ±∞.

(Le signe étant celui du coe�cient dominant an.)
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ii) ex

x
x→+∞−−−−→ +∞ et plus généralement, pour tous réels a > 1 et α > 0 : ax

xα
x→+∞−−−−→ +∞.

iii) xe−x
x→∞−−−→ 0 et plus généralement, pour tous réels a ∈ ]−1 ; 1[ et α > 0 : axxα

x→+∞−−−−→ 0.

iv) x
ln(x)

x→+∞−−−−→ +∞ et plus généralement, pour tous réels α > 0 et β > 0 : xα

(lnx)β
x→+∞−−−−→ +∞.

Proposition 26 (Adaptation en −∞). Les limites suivantes sont à connaître. On peut invoquer ces

résultats sur une copie sans justi�cation en précisant � par résultat de croissances comparées classiques,

on a ... �

i) Si P : x 7→
n∑
k=0

akx
k est un polynôme non constant (n > 1 et an 6= 0), alors P (x)

x→−∞−−−−→ ±∞. Le

signe étant déterminé de la manière suivante :

� Si an > 0 et si n est pair, alors lim
x→−∞

P (x) = +∞.

� Si an > 0 et si n est impair, alors lim
x→−∞

P (x) = −∞.

� Si an < 0 et si n est pair, alors lim
x→−∞

P (x) = −∞.

� Si an < 0 et si n est impair, alors lim
x→−∞

P (x) = +∞.

ii) e−x

x
x→−∞−−−−→ −∞ et plus généralement, pour tout réel a ∈ ]0 ; 1[ et pour tout entier naturel n :

ax

xn
x→−∞−−−−→ ±∞ ; le signe dépendant de la parité de n.

iii) xex
x→−∞−−−−→ 0 et plus généralement, pour tout réel a > 1 et pour tout entier n ∈ N : axxn

x→−∞−−−−→ 0.

2.3.2 Limites en zéro

Proposition 27 (Croissances comparées en 0+). Les limites suivantes sont à connaître. On peut invo-

quer ces résultats sur une copie sans justi�cation en précisant � par résultat de croissances comparées

classiques, on a ... �

i) x ln(x)
x→0+−−−−→ 0

ii) Plus généralement, pour tous réels α > 0 et β > 0 : xα| lnx|β x→0+−−−−→ 0.

3 Rappels sur les fonctions continues

3.1 Dé�nitions

Dé�nition 28 (Continuité en un point). Soit I un intervalle de R et f : I → R. Soit x0 ∈ I. On dit
que f est continue en x0 si elle admet une limite en x0 et que lim

x→x0
f(x) = f(x0).

Dé�nition 29 (Continuité sur un intervalle). Soit f une fonction dé�nie sur un intervalle I de R et
J un intervalle inclus dans I. On dit que f est continue sur J si la restriction de f sur J est continue
en chaque point de J .

Attention ! On parle bien, dans la dé�nition précédente, de la restriction de f à J . Par exemple, la
fonction 1[0 ; 1] est bien continue sur [0 ; 1] alors qu'elle n'est pas continue en 0. (Mais sa restriction à
l'intervalle [0 ; 1] est bien continue en 0).

On déduit de ces considérations un lemme très utile pour étudier la continuité des fonctions dé�nies
par morceaux :

Lemme 30. Soit g une fonction dé�nie sur un intervalle J et f une autre fonction dé�nie sur un

sous-ensemble E de R. Soit également x0 ∈ E. On suppose qu'il existe un réel α > 0, tel que :

i) ]x0 − α ; x0 + α[ ⊂ J ∩ E,
ii) ∀t ∈ ]x0 − α ; x0 + α[ , f(t) = g(t),

iii) la fonction g est continue sur ]x0 − α ; x0 + α[.

Alors la fonction f est continue en x0.

5



M. Duval PTSI2, Lycée Raspail 26-31 janvier 2026

3.2 Opérations sur les fonctions continues

Lemme 31 (L'ensemble des fonctions continues est stable par combinaison linéaire.). Soit I un inter-

valle de R et f et g deux fonctions continues sur I.
Alors, pour tout (α, β) ∈ R2, la fonction (αf + βg) est continue sur I.

Proposition 32. Le produit de fonctions continues, le quotient de fonctions continues (si le dénomi-

nateur ne s'annule pas), la composition de fonctions continue sont encore des fonctions continues.

Proposition 33. Si f et g sont deux fonctions continues I → R, alors
� La fonction |f | est encore continue sur I.
� La fonction max(f, g) est encore continue sur I.

3.3 Propriétés globales des fonctions continues

La continuité d'une fonction sur un intervalle est une propriété très forte 1 qui a certaines consé-
quences relativement intuitives mais pas si facile à prouver à moins de réaliser une étude poussée de
la structure du corps des réels.

Théorème 34 (Théorème des valeurs intermédiaires). Soit f une fonction continue sur I et a et b
deux éléments de I avec a < b. (On supposera également f(a) < f(b) par simple commodité d'écriture).

Si y est un réel véri�ant f(a) 6 y 6 f(b), alors il admet un antécédent par f .

Le théorème des valeurs intermédiaires admet un corollaire qui s'énonce très simplement.

Corollaire 35 (Image d'un intervalle). Si f est une fonction continue sur un intervalle I, alors l'image

directe f(I) est un intervalle.

Remarque 36. La preuve de ce dernier corollaire nécessite d'admettre ou de prouver qu'un sous-
ensemble I de R est un intervalle si et seulement si il véri�e la propriété suivante :

∀(a, b) ∈ I2, ∀x ∈ R, (a 6 x 6 b) =⇒ x ∈ I.

On dispose également d'une généralisation du théorème des valeurs intermédiaires, lorsque l'on
évoque des limites.

Théorème 37 (Théorème des valeurs intermédiaires généralisé). Soit f une fonction continue sur I
et a et b deux éléments de I avec a < b (comprenant éventuellement le cas a = −∞ ou b = +∞). On

suppose que f admet une limite en a et en b que l'on notent respectivement `a et `b.
On supposera également `a < `b par simple commodité d'écriture). Si y est un réel véri�ant `a <

y < `b, alors il admet un antécédent par f .

Pause de lecture 1 : Prouver ce théorème des valeurs intermédiaires généralisé à l'aide du théorème des
valeurs intermédiaires classiques et des dé�nitions formelles de limites.

Théorème 38 (Image d'un segment). Si f est une fonction continue sur un intervalle fermé borné

I, alors l'image directe f(I) est un intervalle fermé borné. (on parle aussi de segment pour désigner

un intervalle fermé borné).

Remarque 39. Si I est un intervalle mais pas un segment, alors f(I) est un intervalle qui peut être de
nature très di�érente de I. Le lecteur cherchera des exemples où I est borné mais pas f(I), ou encore
des exemples ou I est fermé mais pas f(I), etc.

Corollaire 40. Une fonction continue sur un segment est bornée et atteint ses bornes. Autrement dit,

si I est un segment et f : I → R une fonction continue, alors sup
x∈I

f(x) existe ainsi que inf
x∈I

f(x). De

plus, il existe deux réels a et b appartenant à I tels que f(a) = sup
x∈I

f(x) et f(b) = inf
x∈I

f(x). Ces bornes

supérieure et inférieure sont donc des maximum et minimum.

1. À titre de curiosité, on pourra essayer de comprendre qu'il existe autant de fonctions continues de R → R que de
nombres réels. Alors qu'il existe évidemment bien plus de fonctions totales de R → R.
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Théorème 41 (Théorème de la bijection). Soit f une fonction continue I → R. Alors f est injective

si et seulement si elle est strictement monotone. De plus, dans ce cas, elle réalise une bijection de I
sur f(I) (qui est encore un intervalle). La bijection réciproque f−1 : f(I) → I est alors encore une

fonction continue et de même monotonie que f .

Théorème 42 (Théorème de la bijection, version aux limites). Soit ]a ; b[ un intervalle de R et f une

fonction dé�nie sur ]a ; b[ à valeurs dans R. On suppose de plus que f admet des limites en a et b que
l'on note respectivement `a et `b. Si f est une fonction continue et strictement monotone, alors elle

réalise une bijection entre les intervalles ]a ; b[ et J où J est l'intervalle dé�nie par :

� J = ]`a ; `b[ si f est strictement croissante.

� J = ]`b ; `a[ si f est strictement décroissante.

De plus, la réciproque de f est encore une bijection entre J et ]a ; b[ qui a même sens de variation que

f et qui est également continue.

Ce théorème reste valables si les bornes a et b ou les limites `a et `b sont in�nies.

Pause de lecture 2 : Prouver le théorème de la bijection dans sa version aux limites à l'aide de sa
version classique et des dé�nitions formelles de limites.

3.4 Extension de la continuité aux fonctions complexes

Nous étendons brièvement les résultats précédents aux fonctions dé�nies sur un intervalle I de R à
valeurs dans C.

Attention ! Il n'est pas question ici d'étendre ces résultats sur les fonctions de la variable complexe
dé�nie sur C. La dé�nition de continuité ou de limite dans ce cadre est quand même plus délicate. Je
renvoie au cours de deuxième année pour des détails sur ce fait.

Dé�nition 43 (Limite de fonctions à valeurs complexe). Soit I un intervalle de R, f une fonction
dé�nie sur I à valeur dans C et x0 un réel de I ou une extrémité (éventuellement x0 = inf(I) ou
x0 = sup(I)). Soit également z un complexe.

� Pour x0 un réel �ni ; on dit que lim
x→x0

f(x) = z si :

∀ε > 0, ∃δ > 0, ∀x ∈ I ∩ [x0 − δ ; x0 + δ] , |f(x)− z| 6 ε. (1)

� Pour x0 = +∞ ; on dit que lim
x→+∞

f(x) = z si :

∀ε > 0, ∃a ∈ R, ∀x ∈ I ∩ [a ; +∞[ , |f(x)− z| 6 ε. (2)

� Pour x0 = −∞ ; on dit que lim
x→−∞

f(x) = z si :

∀ε > 0, ∃a ∈ R, ∀x ∈ I ∩ ]−infty ; a] , |f(x)− z| 6 ε. (3)

Théorème 44 (Théorème des gendarmes , version complexe). Soit I un intervalle de R, f une fonction

dé�nie sur I à valeur dans C et x0 un réel de I ou une extrémité (éventuellement x0 = inf(I) ou

x0 = sup(I)). Soit en�n z un complexe.

S'il existe une fonction réelle positive g véri�ant :

∀x ∈ I, |f(x)− z| 6 z

lim
x→x0

g(x) = 0
; alors la fonction f

admet pour limite z en x0.

Application 45. Montrer que la fonction t 7→ eit est continue sur R.

Dé�nition 46. Soit I un intervalle de R, f une fonction dé�nie sur I à valeur dans C. Pour tout
x0 ∈ I, on dit que f est continue en x0 si elle y admet une limite et si f(x0) = lim

x→x0
f(x).

On dit que f est continue sur I si elle est continue en tout point de I

Lemme 47. Pour deux fonctions f et g complexe continue sur un intervalle I, la somme f + g, le
produit fg ou encore les combinaisons linéaires αf + βg pour tout (α, β) ∈ C2 sont continues sur I.
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Proposition 48. Soit I un intervalle de R, f une fonction dé�nie sur I à valeur dans C. La fonction

f est continue sur I si et seulement si chacune des fonctions réelles Re(f) et Im(f) est continue sur

I.

Lemme 49. Soit I un intervalle de R, f une fonction dé�nie sur I à valeur dans C. Si la fonction f
est continue sur I, alors la fonction réelle |f | est continue sur I.

La réciproque est fausse en général.

Théorème 50 (Les fonctions continues sur un segment sont bornées). Soit a, b deux réels véri�ant

a < b et une fonction f continue sur le segment [a ; b] à valeurs complexe. Alors la fonction f est

bornée et atteint sa borne sur le segment [a ; b]. Autrement dit :

∃c ∈ [a ; b] , ∀t ∈ [a ; b] |f(t)| |f(c)| . (4)

Proposition 51. Soit I un intervalle de R, f une fonction dé�nie sur I à valeur dans C. Alors :
� La fonction exp(f) est continue sur I,
� si la fonction f ne s'annule pas, alors la fonction 1

f est continue sur I.
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