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Colles semaine 19

En bref

� Dé�nition des limites de suites (réelles et complexes).
� Dé�nition des limites de fonctions
� Continuité des fonctions, propriétés globales.
� Notion d'espaces vectoriels. Règles de calculs dans les espaces vectoriels.
� Notions de sous-espaces vectoriels, exemple en présentation cartésienne ou paramétriques.
� Familles libres, génératrices, bases.
� Sous-espace vectoriel engendrée par une famille. Notation Vect.
� Savoir trouver une base d'un sous-espace vectoriel décrit par des équations cartésiennes.
� Savoir déterminer une présentation cartésienne de Vect(e1, . . . , en) connaissant les vecteurs

(e1, . . . , en).

Exemples non exhaustifs de questions de cours

Les étudiantes et étudiants se présentent à la colle en sachant répondre rapidement et précisément

à TOUTES les questions suivantes. Ils seront interrogés sur l'une d'entre elles.

� Citer le théorème de composition de limites pour la composée d'une suite et d'une fonction. En
déduire que si une suite u véri�ant ∀n ∈ N, un+1 = f(un) converge vers ` et que f est continue
en `, alors f(`) = `.

� Montrer que x 7→ cos
(
1
x

)
n'a pas de limite en zéro.

� Citer le théorème sur l'image directe des intervalles (respectivement des segments) par une
fonction continue.

� Montrer que l'ensemble
{
(x, y, z) ∈ C3 | x+ 2iy + z = 0

}
est un sous-espace vectoriel de C3 et

en donner une base. On pourra varier les exemples mais on se limitera à des exemples dans Kn

pour n 6 4.

� Étudier la liberté de la famille
(
(1, 1,−1), (−1, 1, 1), (2, 1, 2)

)
dans R3. On pourra varier les

exemple mais on se limitera à des exemples dans Kn pour n 6 4.

� Montrer que Vect

((
0 1
1 0

)
,

(
1 0
0 −1

)
,

(
0 0
1 0

))
= {M ∈M2(K) | Tr(M) = 0}.

Note aux colleurs

� Jusqu'à la �n de l'année, on commencera ou terminera la colle en demandant à chaque étudiant
de citer un développement limité au programme. On sanctionnera sévèrement en cas d'échec.

� Pour cette première semaine d'algèbre linéaire, il est recommandé de se limiter à des exercices
dans Kn ou des sous-espaces vectoriels de Kn.

� Les sommes de sous-espaces vectoriels et à fortiori les sommes directes ne sont pas au pro-
gramme.
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En détail

1 Limites et continuité des fonctions

Reprise du programme précédent.

2 La structure d'espace vectoriel

2.1 Dé�nition des espaces vectoriels

Dé�nition 1 (Espace vectoriel). On appelle espace vectoriel sur K ou K-espace vectoriel la donnée

d'un triplet (E,+, ·) où E est un ensemble non vide muni d'une addition
E × E → E
(x, y) 7→ x+ y

et d'une

multiplication externe
K× E → E
(λ, x) 7→ λ · x véri�ant les huit axiomes suivants :

i) ∀(x, y, z) ∈ E3, (x+ y) + z = x+ (y + z). (L'addition est associative)

ii) ∀(x, y) ∈ E2, (x+ y) = y + x. (L'addition est commutative)

iii) ∃e ∈ E, ∀x ∈ E, e+ x = x+ e = x. (Il existe un élément neutre pour l'addition)

iv) ∀x ∈ E, ∃x′ ∈ E, x+ x′ = x′ + x = e. (Chaque élément admet un opposé)

v) ∀(λ, µ) ∈ K2, ∀x ∈ E, (λµ) · x = λ · (µ · x). (La multiplication externe est associative)

vi) ∀x ∈ E, 1 · x = x. (Le scalaire 1 est neutre pour la multiplication externe).

vii) ∀(λ, µ) ∈ K2, ∀x ∈ E, (λ + µ) · x = λ · x + µ · x. (Distributivité de la multiplication externe sur
l'addition des scalaires)

viii) ∀λ ∈ K, ∀(x, y) ∈ E2, λ · (x+ y) = λ · x+ λ · y. (Distributivité de la multi plication externe sur
l'addition des vecteurs.)

2.2 Règles de calculs

Proposition-Dé�nition 2. Tout espace vectoriel admet par dé�nition un élément neutre pour l'ad-

dition. C'est-à-dire un élément e ∈ E véri�ant ∀x ∈ E, x+ e = e+ x = x. Cet élément est unique et

s'appelle le vecteur nul de E. On le note très souvent 0E.

Proposition-Dé�nition 3. Tout vecteur x d'un espace vectoriel E admet par dé�nition un opposé,

c'est-à-dire un élément x′ véri�ant x′+x = x+x′ = 0E. Cet élément est unique et se note normalement

−x.

Proposition 4 (Règles de calculs dans un espace vectoriel.). Soit E un K-espace vectoriel . Soit x ∈ E
et λ ∈ K ; alors,

λ · x = 0E ⇐⇒ (λ = 0 ou x = 0E) .

Où 0E est l'élément neutre pour l'addition du groupe (E,+).
Par ailleurs :

(−λ · x) = λ · (−x) = −(λ · x).

Où le signe "moins" fait référence à l'opposé dans le corps K pour le premier terme et à l'opposé dans

l'espace vectoriel E pour les deux termes suivants.

2.3 Sous-espaces vectoriels

Dé�nition 5. Soit E un K-espace vectoriel et F une partie de E. On dit que F est un sous-espace
vectoriel de E s'il véri�e les trois conditions suivantes :

i) 0E ∈ F, où 0E est l'élément neutre pour l'addition de l'espace vectoriel E ;

ii) ∀(x, y) ∈ F 2, x+ y ∈ F,
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iii) ∀x ∈ F ∀λ ∈ K, λx ∈ F, où l'on note dorénavant λx le résultat de la multiplication externe.

On traduit cela en disant que F est stable par addition et par multiplication externe.

Proposition 6. Soit E un K-espace vectoriel et F une partie de E. Alors F est un sous-espace vectoriel

de E si et seulement s'il véri�e les deux conditions suivantes :

i) F est non vide,

ii) ∀λ ∈ K ∀(x, y) ∈ F 2, λx+ y ∈ F.

Lemme 7. Un bon étudiant de PTSI sait déterminer en moins d'une minute si chacune des parties

suivantes est ou non un sous-espace vectoriel.

i)
{
(x, y, z) ∈ C3 | x+ 2y + iz = 0

}
dans C.

ii) L'ensemble des complexes imaginaires purs

dans le R-espace vectoriel C ?

iii) L'ensemble des complexes imaginaires purs

dans le C-espace vectoriel C ?

iv) {z ∈ C| | |z| 6 1} dans C ?

v) L'ensemble des matrices symétriques dans

Mn(R) ?
vi) L'ensemble des matrices inversibles dans

Mn(R).
vii) L'ensemble des fonctions dérivables dans RR ?

viii) L'ensemble des fonctions bornées dans RR ?

ix) Soit M ∈ R+. L'ensemble des fonctions bor-

nées par M dans RR ?

x) L'ensemble des fonctions paires dans RR ?

xi) L'ensemble des fonctions croissantes dans

RR ?

xii) L'ensemble des fonctions monotones dans

RR ?

xiii) L'ensemble des suites convergentes dans RN ?

xiv) L'ensemble des suites convergentes vers 0

dans RN ?

xv) L'ensemble des suites convergentes vers 1

dans RN ?

Proposition 8. Soit E un K-espace vectoriel et F et G deux sous-espaces vectoriels de E. Alors F ∩G
est encore un sous-espace vectoriel de E.

3 Combinaisons linéaires

3.1 Familles libres

Dé�nition 9 (Famille libre). Soit E un K-espace vectoriel , n ∈ N et (x1, . . . , xn) ∈ En une famille
de vecteurs de E. On dit que la famille (x1, . . . , xn) est libre si elle véri�e l'implication suivante :

∀(λ1, . . . , λn) ∈ Kn,

(
n∑

i=1

λixi = 0E =⇒ ∀i ∈ J1 ; nK, λi = 0

)
. (1)

Autrement dit, la seule combinaison linéaire nulle de la famille est celle à coe�cients tous nuls.
Notons que l'implication réciproque est véri�ée par toute les familles.
On appelle famille liée toute famille qui n'est pas libre.

Lemme 10 (Principe d'identi�cation des coe�cients d'une combinaison linéaire de famille libre). Soit
E un K-espace vectoriel , n ∈ N et (x1, . . . , xn) ∈ En une famille libre de vecteurs de E. Alors, pour
toutes familles de scalaires (λ1, . . . , λn) ∈ Kn et (µ1, . . . , µn) ∈ Kn :

∀(λ1, . . . , λn) ∈ Kn,

(
n∑

i=1

λixi =
n∑

i=1

µixi ⇐⇒ ∀i ∈ J1 ; nK, λi = µi

)
. (2)

Proposition 11. Voici une liste de propositions élémentaires à propos des familles libres :

i) Une famille contenant le vecteur nul est liée.

ii) Une famille à un élément est libre si et seulement si l'unique élément de la famille est non nul.

iii) Tous les éléments d'une famille libre sont distinct deux à deux.
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iv) Toute sous-famille d'une famille libre est encore libre.

v) Toute sur-famille d'une famille liée est encore liée.

Proposition 12. Soit E un K-espace vectoriel , n ∈ N et (x1, . . . , xn) ∈ En une famille de vecteurs de

E. Alors, la famille (x1, . . . , xn) est liée si et seulement si l'un des vecteurs xi est combinaison linéaire

des autres, c'est-à-dire combinaison linéaire de la famille (x1, . . . xi−1, xi+1, . . . , xn).

3.2 Familles génératrices

Dé�nition 13 (Famille génératrice). Soit E un K-espace vectoriel, n ∈ N et (x1, . . . , xn) ∈ En une
famille de vecteurs de E. On dit que la famille (x1, . . . , xn) est génératrice de E si tout vecteur y de E
peut s'écrire comme combinaison linéaire de la famille (x1, . . . , xn). Autrement dit si :

∀y ∈ E, ∃(λ1, . . . , λn) ∈ Kn, y =

n∑
k=1

λixi.

3.3 Bases

Dé�nition 14. Une famille qui est à la fois une famille libre et une famille génératrice de E est appelée
une base de E.

Proposition-Dé�nition 15. Beaucoup d'espaces vectoriels usuels sont muni de bases � naturelles �

dite canonique.

� Dans Kn, la famille (e1, . . . en) où ∀i ∈ J1 ; nK, ei =
(
0, . . . , 0, 1

i-ème coef
, 0, . . . 0

)
est

une base appelé base conique de Kn.

� Dans Mn,p(K), la famille (Ei,j)16i6n
16j6p

dé�nie ci-dessous est une base appelé base canonique de

Mn(p)K.

∀i ∈ J1 ; nK, ∀j ∈ J1 ; pK, Ei,j =



jy
0 . . . 0 . . . 0
...

...

i −→ 0 1 0
...

...

0 . . . 0 . . . 0


� Dans Kn[X], la famille (1, X,X2, . . . , Xn) est une base appelée base canonique de Kn[X].

3.4 Sous-espaces vectoriels engendrées par une famille

Dé�nition 16. Soit E un K-espace vectoriel. On appelle sous-espace vectoriel engendré par une
famille 1 F de E et on note Vect(F) l'ensemble des combinaisons linéaires de cette famille. Autrement
dit : si (x1, . . . , xn) est une famille �nie, alors :

Vect(x1, . . . , xn) =

{
n∑

i=1

λixi : (λ1, . . . , λn) ∈ Kn

}
. (3)

Lemme 17 (le sous-espace engendré par une famille est le plus petit sous-espace vectoriel contenant
la famille). Soit E un K-espace vectoriel et soit (x1, . . . , xn) une famille de vecteur de E. Alors tout

sous-espace vectoriel F de E qui contient la famille (x1, . . . , xn) contient encore Vect(x1, . . . , xn).

Remarque 18. Une famille (x1, . . . , xn) d'un espace vectoriel E est génératrice de E si et seulement si
Vect(x1, . . . , xn) = E.

1. le programme o�ciel se limite au cas où la famille contient un nombre �ni de vecteurs
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