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Colles semaine 20

En bref

� Notion d'espaces vectoriels. Règles de calculs dans les espaces vectoriels.
� Notions de sous-espaces vectoriels, exemple en présentation cartésienne ou paramétriques.
� Familles libres, génératrices, bases.
� Sous-espace vectoriel engendrée par une famille. Notation Vect.
� Savoir trouver une base d'un sous-espace vectoriel décrit par des équations cartésiennes.
� Savoir déterminer une présentation cartésienne de Vect(e1, . . . , en) connaissant les vecteurs

(e1, . . . , en).
� Somme de sous-espaces vectoriels et sommes directes.
� Applications linéaires. Dé�nition et exemples systématiques en petite dimension.
� Noyau et Image d'une application linéaire. Notation Ker(f) et Im(f). Critère sur l'injectivité.
� La combinaison linéaire, la composée d'applications linéaires est encore linéaire. L'application

réciproque d'un isomorphisme est encore un isomorphisme.

Exemples non exhaustifs de questions de cours

Les étudiantes et étudiants se présentent à la colle en sachant répondre rapidement et précisément

à TOUTES les questions suivantes. Ils seront interrogés sur l'une d'entre elles.

� Montrer que l'ensemble
{
(x, y, z) ∈ C3 | x+ 2iy + z = 0

}
est un sous-espace vectoriel de C3 et

en donner une base. On pourra varier les exemples mais on se limitera à des exemples dans Kn

pour n 6 4.

� Étudier la liberté de la famille
(
(1, 1,−1), (−1, 1, 1), (2, 1, 2)

)
dans R3. On pourra varier les

exemple mais on se limitera à des exemples dans Kn pour n 6 4.
� Dans M2(C) (voire Mn(C) pour n quelconque), donner une base de Ker(Tr) et montrer que

les sous-espaces vectoriels Ker(Tr) et Vect(In) sont supplémentaires.
� Pour une application linéaire f , rappeler la dé�nition de Ker(f) et Im(f) et montrer qu'il s'agit

de sous-espaces vectoriels.
� Montrer qu'une application linéaire f est injective si et seulement si Ker(f) = {0E}.

Note aux colleurs

� Jusqu'à la �n de l'année, on commencera ou terminera la colle en demandant à chaque étudiant
de citer un développement limité au programme. On sanctionnera sévèrement en cas d'échec.

� Pour les sommes de sous-espaces vectoriels, le programme o�ciel demande de ne traiter que le
cas à deux sous-espaces vectoriels en première année. J'ai évidemment traité le cas général pour
éviter que les étudiants s'habitue trop au critère miraculeux sur l'intersection.
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En détail

1 La structure d'espace vectoriel

Reprise du programme précédent.

2 Combinaisons linéaires

Reprise du programme précédent.

3 Somme de sous-espaces vectoriels

Dé�nition 1 (Somme de deux sous-espace vectoriel). Soit E un K-espace vectoriel et F et G deux
sous-espaces vectoriels de E. On appelle somme de F et G et on note F +G le sous-espace vectoriel :

F +G = {xF + xG : xF ∈ F, xG ∈ G} . (1)

Le lecteur véri�era que cela dé�nit bien un sous-espace vectoriel.

Dé�nition 2. Soit E un K-espace vectoriel. Soit également, (F1, . . . , Fn) une famille de sous-espaces
vectoriels de E. On dé�nit la somme des sous-espaces vectoriels comme le sous-espace vectoriel :

n∑
i=1

Fi =

{
n∑

i=1

xi | x1 ∈ F1, . . . , xn ∈ Fn

}
. (2)

Le lecteur se convaincra que cette dé�nition coïncide avec la précédente lorsque n = 2.

Remarque 3 (La somme de sous-espaces vectoriels est le plus petit sous-espace vectoriel contenant
chacun des sous-espaces vectoriels). Soit E un K-espace vectoriel. Soit également, (F1, . . . , Fn) une
famille de sous-espaces vectoriels de E. Alors, pour tout sous-espace vectoriel G de E on a l'implication
suivante :

(∀i ∈ J1 ; nK, Fi ⊂ G) =⇒
n∑

i=1

Fi ⊂ G (3)

Dé�nition 4 (Somme directe). Soit E un K-espace vectoriel, soit n ∈ N∗ et soit (F1, . . . , Fn) une

famille de sous-espaces vectoriels de E. On dit que la somme
n∑

i=1
Fi est directe et on note F1⊕ · · ·⊕Fn

si l'équivalence suivante est véri�ée :

∀(x1, . . . xn) ∈ F1 × · · · × Fn,

(
n∑

i=1

xi = 0E =⇒ ∀i ∈ J1 ; nKxi = 0E

)
. (4)

Notons que l'implication réciproque �⇐ � est toujours véri�ée.

Proposition 5. Soit E un K-espace vectoriel et F et G deux sous-espaces vectoriels de E. Alors, la

somme F +G est directe si et seulement si F ∩G = {0E}.

Attention : Cela ne se généralise malheureusement pas à plus de deux sous-espaces vectoriels.
Le lecteur étudiera attentivement l'exemple dans K2 des sous-espaces vectoriels F = Vect((1, 0)) ,
G = Vect((0, 1)) et H = Vect((1, 1)) pour s'en convaincre.

Proposition 6. Dans une somme directe, on a unicité de la décomposition d'un vecteur comme une

somme d'élément de chaque sous-espace vectoriel. Plus précisément, si E est un K-espace vectoriel, n
est un entier naturel non nul, (F1, . . . , Fn) est une famille de sous-espaces vectoriels de E en somme

directe et si x ∈ F1 + · · ·+ Fn ; alors ∃!(x1, . . . , xn) ∈ F1 × · · · × Fn, x = x1 + · · ·+ xn.
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Dé�nition 7. Soit E un K-espace vectoriel, soit n ∈ N∗ et soit (F1, . . . , Fn) une famille de sous-espaces
vectoriels de E. On dit que les sous-espaces vectoriels Fi sont supplémentaires s'ils véri�ent les deux
conditions suivantes :

i) La somme
n∑

i=1
Fi est directe.

ii) Et cette somme est égale à E, c'est-à-dire
n⊕

i=1
Fi = E

Remarque 8. On prêtera attention, dans la dé�nition précédente, à l'ordre dans lequel on impose ces

deux conditions. Il n'est, en e�et, pas question d'employer la notation
n⊕

i=1
Fi avant d'avoir montré ou

supposé que la somme était directe.

Proposition 9. Soit E un K-espace vectoriel, soit n ∈ N∗ et soit (F1, . . . , Fn) une famille de sous-

espaces vectoriels supplémentaires de E. Alors :

∀x ∈ E, ∃! (x1, . . . , xn) ∈ F1 × · · · × Fn, x = x1 + · · ·+ xn. (5)

4 Applications linéaires

4.1 Terminologie

Dé�nition 10. Soit E et F deux K-espaces vectoriels et f : E → F une application. On dit que f
est une application linéaire ou encore un morphisme d'espaces vectoriels si elle véri�e les deux axiomes
suivants :

i) ∀(x, y) ∈ E2, f(x+ y) = f(x) + f(y).

ii) ∀x ∈ E, ∀λ ∈ K, f(λx) = λf(x).

Certains cas particuliers donnent lieu à un vocabulaire spéci�que ; en reprenant les notations précé-
dentes :

� Si F = E, on dit que f est un endomorphisme.

� Si f est bijective, on dit que c'est un isomorphisme.

� Si f est un endomorphisme bijectif, on dit que c'est un automorphisme.

� Si F = K, on dit que f est une forme linéaire.

Dé�nition 11. Soit E et F deux espaces vectoriels. On dit qu'il sont isomorphes s'il existe un isomo-
prhisme d'espaces vectoriels entre E et F .

4.2 Propriétés des applications linéaires

4.2.1 Généralités

Commençons par un lemme assez trivial :

Lemme 12. Si f : E → F est un morphisme d'espaces vectoriels, alors f(0E) = 0F .

Proposition 13. Soit f : E → F une application entre espaces vectoriels. L'application f est linéaire

si et seulement si elle véri�e :

∀(x, y) ∈ E2, ∀λ ∈ K, f(λx+ y) = λf(x) + f(y).

Proposition 14 (Images directes et réciproques de sous-espaces vectoriels). Soit f : E → F un

morphisme d'espaces vectoriels ; alors :

i) Pour tout sous-espace vectoriel A de E, son image directe f(A) est un sous-espace vectoriel de F .

ii) Pour tout sous-espace vectoriel B de F , son image réciproque f−1(B) est un sous-espace vectoriel

de E
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4.2.2 Noyaux et images

La proposition 14 possède deux cas particuliers d'applications très importants :

Proposition-Dé�nition 15. Soit f : E → F un morphisme d'espace vectoriel. Alors l'ensemble

f−1({0F }) est un sous-espace vectoriel de E que l'on appelle noyau de f et que l'on note ker(f).

Proposition 16. Une application linéaire f : E → F est injective si et seulement si ker(f) = {0E}.

Proposition-Dé�nition 17. Soit f : E → F un morphisme d'espaces vectoriels. Alors l'ensemble

f(E) est un sous-espace vectoriel de F que l'on appelle image de f et que l'on note Im(f).

Remarque 18. Une application linéaire f : E → F est surjective si et seulement si Im(f) = F .

4.3 Quelques résultats de structure

Notation 19. Si E et F sont deux espaces vectoriels, on note L(E,F ) l'ensemble des morphismes
d'espaces vectoriels de E vers F . Lorsque E = F , on note simplement L(E) au lieu de L(E,E). En�n,
on note GL(E) l'ensemble des automorphismes de E (c'est-à-dire l'ensemble des endomorphismes
bijectifs.)

Lemme 20. Soit E et F deux espaces vectoriels. L'ensemble L(E,F ) des applications linéaires de E
dans F est un sous-espace vectoriel de l'ensemble FE des applications de E dans F .

Attention ! L'ensemble GL(E) n'est pas un sous-espace vectoriel de L(E).

Proposition 21 (La composée d'applications linéaire est encore linéaire). Soit E, F et G trois espaces

vectoriels ainsi que f : E → F et g : F → G. Si f et g sont linéaires, alors l'application g ◦ f est

linéaire.

Lemme 22 (Distributivité de la composition sur l'addition). Soit E, F et G trois espaces vectoriels.

� Si f : E → F ainsi que g1 : F → G et g2 : F → G sont linéaires alors, (g1+g2)◦f = g1◦f+g2◦f .
(Ceci est vrai pour toutes applications, par dé�nition)

� Si f1 : E → F et f2 : E → F ainsi que g : F → G sont linéaires alors, g◦(f1+f2) = g◦f1+g◦f2.
(Ceci est en général faux si l'application g n'est pas linéaire)

Proposition 23. Soit f : E → F un isomorphisme (donc une application bijective) d'espaces vecto-

riels. Alors la réciproque f−1 est encore un isomorphisme d'espaces vectoriels.

Dé�nition 24. Soit E et F deux espaces vectoriels. On dit que E est isomorphe à F s'il existe un
isomorphisme d'espaces vectoriels entre E et F .

Remarque 25. Le résultat sur la réciproque des isomorphismes permet d'a�rmer que E est isomorphe
à F si et seulement si F est isomorphe à E.
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