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|Colles semaine 21 |

En bref

— Somme de sous-espaces vectoriels et sommes directes.

— Applications linéaires. Définition et exemples systématiques en petite dimension.

— Noyau et Image d’une application linéaire. Notation Ker(f) et Im(f). Critére sur l'injectivité.

— La combinaison linéaire, la composée d’applications linéaires est encore linéaire. L’application
réciproque d’un isomorphisme est encore un isomorphisme.

— Dérivabilité des fonctions. Equivalence avec I’existence d’un développement limité d’ordre 1.

— Démonstration des formules de calculs de dérivées : combinaisons linéaires, produit, quotient,
composition et réciproque des application bijectives.

— Etude de la dérivabilité de fonctions définies « par morceaux ». Théoréme de prolongement C*
(s’appelle aussi théoréme de limite de la dérivée)

— Propriétés globales des fonctions dérivables : théoréme de Rolle, égalités et inégalités des ac-
croissements finis.

— Cas des fonctions & valeurs complexes.

— Dérivées itérés, notation C¥(I,K) et formule de Leibniz.

Exemples non exhaustifs de questions de cours

Les étudiantes et étudiants se présentent a la colle en sachant répondre rapidement et précisément
6 TOUTES les questions suivantes. Ils seront interrogés sur 'une d’entre elles.
— Dans M3 (C) (voire M,,(C) pour n quelconque), donner une base de Ker(Tr) et montrer que
les sous-espaces vectoriels Ker(Tr) et Vect(I,,) sont supplémentaires.
— Pour une application linéaire f, rappeler la définition de Ker(f) et Im(f) et montrer qu’il s’agit
de sous-espaces vectoriels.
— Montrer qu’une application linéaire f est injective si et seulement si Ker(f) = {0g}.
— Citer et montrer e théoréme de Rolle.
— Montrer que la fonction f : z +— cos(y/z) est de classe C! sur [0; +00] en appliquant le théoréme
de prolongement C!.
— Citer sans démonstration 'inégalité des accroissements finis. L’appliquer pour montrer que la
ug = 0
Vn eN Jupr1 =

1

1 converge vers 5

un"r%

suite définie par {

Note aux colleurs

— Jusqu’a la fin de 'année, on commencera ou terminera la colle en demandant & chaque étudiant
de citer un développement limité au programme. On sanctionnera sévérement en cas d’échec.

— Pour les sommes de sous-espaces vectoriels, le programme officiel demande de ne traiter que le
cas & deux sous-espaces vectoriels en premiére année. J’ai évidemment traité le cas général pour
éviter que les étudiants s’habitue trop au critére miraculeux sur I'intersection.
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En détail

1 Somme de sous-espaces vectoriels

Reprise du programme précédent.

2 Applications linéaires

Reprise du programme précédent.

3 Dérivabilité des fonctions

3.1 Dérivabilité en un point

Définition 1. Soient a € I et f : I — R une fonction.
On dit que fest dérivable en a si 'application

I—{a} —- R

ol T @i

r—a
admet une limite finie en a. Dans ce cas, cette limite s’appelle le nombre dérivé de f en a et se

note f'(a) ou %(a).

Remarque 2. Quelques remarques sur cette définition :
— Pour tout z € I — {a}, le réel 7,(x) s’appelle le taux d’accroissement de la fonction f entre
x et a. Que représente-t-il graphiquement 7
— Si f est dérivable en a, on a donc, quitte & changer de variable.
_ h) —
f'(a) = lim f@) = f(a) ou encore f'(a) = lim flath) = fla)

r—a r—a h—0 h

— Le caractére dérivable d’une fonction en a est une propriété locale : si f et g sont deux fonctions
qui coincident au voisinage de a, f est dérivable en a si et seulement si g I’est. Dans ce cas,

f'(a) =g'(a).
Proposition 3 (Développement limité d’ordre 1). Soient a € I et f: I — R une fonction.

Alors, f est dérivable en a si et seulement si il existe un réel a permettant d’écrire le développement
limité suivants (ils sont équivalents) :

f(z)

Dans ce cas, le nombre o vérifiant la formule est unique et vaut o = f'(a).

(@) + alx —a) + o(z — a).

= f
T—a

Remarque 4. Commentons cette proposition :
— Par le méme changement de variable que précédemment, ce développement limité est équivalent
au suivant :

fla+h) o f(a) + ah + o(h). (1)

— L’expression y = f(x) + f'(a)(x — a) est I’équation d'une droite que 'on appelle tangente a la
courbe de f en a. C’est en un sens la "meilleure" approximation affine de f au voisinage de a.

Définition 5 (Dérivabilité a gauche et a droite). Soient a € I et f: I — R une fonction.

— On dit que f est dérivable a droite en a lorsque = — W admet une limite finie &
droite de a. On note alors f}j(a) cette limite et on I'appelle la dérivée a droite de f en a.
— On dit que f est dérivable 4 gauche en a lorsque = +— W admet une limite finie a

gauche de a. On note alors fg(a) cette limite et on 'appelle la dérivée a gauche de f en a.

Proposition 6. Soient a un point intérieur a I et f : I — R une fonction. Alors, f est dérivable en
a si et seulement si elle est dérivable & gauche et a droite en a et que fy(a) = fg(a).
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3.2 Fonction dérivée

Définition 7 (Dérivabilité sur un intervalle, fonction dérivée). Soit f : I — R une application. On
dit que f est dérivable sur I si elle est dérivable en tout point de I. Dans ce cas, la fonction
, I — R

I /

z = fi(x)
Remarque 8. Si f est définie sur une réunion d’intervalles, on dit que f est dérivable si sa restriction
a chaque intervalle de la réunion est dérivable.

s’appelle la fonction dérivée de f .

Proposition 9 (Dérivable implique continue). Si f : I — R est dérivable en a € I, alors, [ est
continue en a.

Remarque 10. Attention la réciproque est fausse. Exemple de x +— |z| qui est continue en () mais n’est
pas dérivable en 0.

3.3 Opérations sur les fonctions dérivables

3.3.1 Opérations algébriques

Proposition 11 (Opérations algébriques). Soient f,g: I — R deuz fonctions dérivables en un point
a de I.

i) Pour tout (o, B) € K2 la combinaison linéaire af + Bg est dérivable en a et
(af + Bg)'(a) = af'(a) + Bg'(a)

it) Le produit fg est dérivable en a et
(f9)(a) = f'(a)g(a) + f(a)g'(a)

#i1) Si g ne s’annule pas en a, linverse % est défini sur un voisinage de a, est dérivable en a et

(5) @- 4

iv) Si g ne s’annule pas en a, le quotient 5 est défini sur un voisinage de a et est dérivable en a et
(f)' (@) = f'(a)g(a) — f(a)g'(a)
9 9*(a)

3.3.2 Composition

Proposition 12 (Dérivée d'une composition). Soient f : I — R et g : J — R deuz applications et
a €1.Sif est dérivable en a et si g est dérivable en b= f(a), alors go f est dérivable en a et

(g0 f)(a) =g (f(a)) x f'(a).
Remarque 13. La proposition précédente ne donne qu'une condition suffisante pour la dérivabilité de

go f.Si f n’est pas dérivable en a ou g n’est pas dérivable en f(a), on ne peut rien conclure. Il faut
alors revenir & la définition. On pourra, a titre d’exemple, étudier 'exercice ?7.

3.3.3 Dérivation des bijections réciproques

Proposition 14 (Dérivée de la fonction réciproque en un point). Soit f : I — J une fonction bijective
et continue, b € J et a = f~1(b). On suppose que f dérivable en a et que f~! est continue en f(a).
Alors, f=1 est dérivable en b si et seulement si f'(a) # 0, et, dans ce cas,

Y0 = - !

Si la fonction est continue sur un ¢ntervalle I, on sait en fait déja que la fonction réciproque est

T e )
continue. Ainsi :

Corollaire 15. Si f est un bijection dérivable d’un intervalle I sur un intervalle J. Alors, f=' est
dérivable sur J si et seulement si f ne s’annule pas sur I.
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4 Propriétés globales des fonctions dérivables

4.1 Une propriété cruciale : ’inégalité des accroissements finis

Lemme 16 (Extremum local). Soit f : I — R une fonction dérivable et xo un point intérieur & I (
C’est-a-dire que xo # inf(I) et xg # sup(l)). Si f admet un extremum local en xq, alors f'(xo) = 0.

- ) ‘ o ‘ . ‘ ;1 — i1
FEgalement, le fait que xg soit un point intérieur & I est crucial. Par exemple, la fonction 05 1] N E?’ ]

admet un mazximum local en 1, mais sa dérivée ne s’y annule pas.

Attention ! Bien siir, ceci ne fournit qu’une condition suffisante pour 'existence d’un extremum local.
Par exemple, la fonction  — 23 a une dérivée qui s’annule en 0 mais n’a pas d’extremum en 0.

Théoréme 17 (Théoréme de Rolle). Soit f une fonction dérivable sur un segment [a; b] — R. Si
f(a) = f(b), alors il existe un réel ¢ € [a; b] vérifiant f'(c) = 0.

Application 18. Si un polynéme réel P de degré n admet n racines réelles , alors son polynome dérivé
P’ admet n — 1 racines réelles.

Théoréme 19 (Egalité des accroissements finis). Soit f une fonction dérivable sur un segment [a; b]
o valeurs dans R. Il existe alors un réel ¢ € Ja; b vérifiant f'(c) = w.

Corollaire 20 (Inégalité des accroissements finis, version avec majoration/minoration). Soit f une
fonction dérivable sur un segment [a; b] — R. On suppose que la fonction dérivé f' vérifie Vo €
[a; b, m < f'(x) < M. Alors, on peut écrire

m(b—a) < f(b) = fla) < M(b—a).

Théoréme 21 (Inégalité des accroissements finis, version alternative). Soient I un intervalle de R et
f I — R une fonction dérivable sur 1. S’ existe un réel M > 0 tel que

veel, [f(t)<M

alors,

Y(a,b) € 1%, |f(b) — f(a)] < M|b— al.

Le lecteur est invité & comprendre que cette inégalité des accroissements finis ne dit pas autre
chose que la trivialité suivante « Si un cycliste posséde une vitesse instantanée qui ne dépasse jamais
40 km.h ™! au cours de son trajet, alors sa vitesse moyenne est inférieure ou égale a 40 km.h™1 »

4.2 Le(s) théoréme(s) fondamental(aux) de I’analyse

Théoréme 22 (Lien entre sens de variations et signe de la dérivée). Soit f : I — R une fonction
dériwable.

— [ est croissante sur I si et seulement si Vo € I, f'(x) > 0.

— [ est décroissante sur I si et seulement siVx € I, f'(x) <O0.

Corollaire 23. Une fonction dérivable sur I est constante si et seulement si sa fonction dérivée est la
fonction nulle.

Proposition 24. Soit f une fonction dérivable sur un intervalle I. Cette fonction est strictement
croissante sur I si et seulement si Vo € R, f(x) = 0 et sl n'existe aucun intervalle de longueur
strictement positive sur lequel f' est constante nulle.

Le lecteur adaptera tout seul cette proposition pour les fonctions strictement décroissante.

Proposition 25 (Unicité des primitives & une constante prés). Si f et g sont deuz fonction dérivables
sur un intervalle I et que f' = ¢', alors il existe une constante C vérifiant Vx € I, f(x) =g(z)+C.
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Théoréme 26 (Théoréme fondamental de analyse). Soit f une fonction continue sur un intervalle
I et a € 1. Alors, il existe une unique primitive de f qui s’annule en a. De plus, cette fonction est
définie de la maniére sutvante :

F:xa/xf(t)dt.

Remarque 27. Nous ne pouvons pour l'instant montrer que 'unicité de cette primitive. Pour montrer
son existence, il faut définir U'intégrale indépendamment de la notion de primitive. Ceci se fait en
construisant l'intégrale comme la valeur de « l’aire sous la courbe ». Une telle définition n’est toute-
fois pas si aisée et fera 'objet d’un chapitre ultérieur. Notons que ’on pourrait également admettre
I’existence de primitive et utiliser ce théoréme pour définir l'intégrale.

4.3 Une autre application : prolongement de fonction C!.

Théoréme 28 (Théoréme de prolongement C' ou théoréme de limite de la dérivée). Soit a,b deuz
réels avec a < b. Soit également f une fonction définie sur [a; b[ et a valeurs réelles. On suppose que
les trois hypothéses suivantes sont satisfaites :

i) La fonction f est continue sur le « fermé » [a; b[.

ii) La fonction f est de classe C' sur Uouvert |a; b].

iii) La dérivée f' admet une limite finie en a que l'on note { = %1_% f(x).

r>a

Alors, la fonction f est de classe C* sur [a; b] et f'(a) = /.
Remarque 29. Avec les mémes hypothéses mais en supposant que la limite £ = %1_% f'(x) est infinie, on

x>a
conclurait que la fonction f est non dérivable en a et qu’elle y admet une demi-tangente verticale.

5 Cas des fonctions & valeurs complexes

Définition 30. Soient a € I et f : I — C une fonction. On dit que fest dérivable en a si 'application
& valeur complexe

I—{a} —- R

oo [@-f@

r—a

admet une limite finie complexe. Cette limite est alors le nombre dérivé de f en a, que I'on note f’(a).

On peut se ramener au cas des fonctions réelles en séparant les parties réelles et imaginaires & 'aide
de la proposition suivante.

Proposition 31. Soient I un intervalle réel, a € I et f: 1 — C une application. Alors,
f est dérivable en a (ou sur I) si, et seulement si, Re(f) et Im(f) le sont.

et dans ce cas,

f'(a) = (Ref)' (a) +i (Imf)' (a).
Corollaire 32. Une fonction f : I — C est constante si, et seulement si, elle est dérivable avec une
dérivée nulle.

Explicitons maintenant les différences avec le cas réel.

Attention ! Les énoncés des théorémes de Rolle et des accroissements finis sont faux pour les fonctions
& valeurs complexes.
Pour s’en convaincre, considérer, par exemple, la fonction f : [0,27] — C,z — €'*.

Proposition 33 (inégalité des accroissements finis : version complexe). Soient I un intervalle de R
et f: 1 — C une fonction de classe C'. S’il existe un réel M > 0 tel que

Veel, |f(a) <M

alors,

¥(a,b) € I, |f(b) — f(a)] < M|b~al.
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6 Dérivées itérées
6.1 Définitions et notations

Définition 34. Soit f : I — R une fonction. On dit que f est de classe C! sur I si f est dérivable
sur [ et si sa fonction dérivée f’ est continue sur I.

Exemple 35. i) Les fonctions polynomiales, exponentielles, etc. sont de classe C! sur R.
R — R
ii) La fonction f : v { z?sin(l) siz#0 est dérivable sur R mais pas de classe C'.
0 siz=0

Définition 36 (Dérivées successives). Soient a € I et f: I — R une fonction. On définit les dérivées
successives de f par récurrence. On pose f(© = f. Pour un entier naturel n donné, on suppose la
fonction f( : I — R déterminée. Si (™) est dérivable en a, on pose f("*1)(a) = (f(”)), (a), et si f(™
est dérivable sur I, on pose f(+1) = (f(”))/.

Lorsqu’il existe, le nombre f(”)(a) s’appelle le nombre dérivé n-iéme de fen a. On dit alors que
f est n fois dérivable en a.

Lorsqu’elle existe, la fonction f(™ s’appelle la dérivée m-iéme de f. On dit alors que f est n fois
dérivable sur I.

On dit, de plus, que f est de classe C™sur I si f(") existe et est continue sur I.

Une fonction est dite de classe C*°sur I si elle est de classe C™ pour tout entier naturel n.

Remarque 37. On note C"(I,R) ou C™(I) I'ensemble des fonctions de classe C" de I dans K, et C*°(1,R)

ou C®(I) Vensemble des fonctions de classe C>° de I dans R. On note aussi f(a) = ‘(ﬁ—,{(a) et
f) = %_

xn

6.2 Calculs pratiques de dérivées itérées

Proposition 38. Soit f et g deux fonctions de classe C™ sur I.
i) Pour tout couple (v, B) € R?, la fonction (af+8g) est de classe C™ et on a méme (o f + ﬂg)(n) (x) =
aft(x) + Bg™ (x).
it) Le produit fg est de classe C™.
i) Le quotient 5 (si g ne s’annule pas) est de classe C™.
iv) La composée go f (si elle a un sens) est de classe C™.
Proposition 39 (Formule de Leibniz). Soit I in intervalle de R ; f et g deuz fonctions définies sur R

a valeurs dans K ;a un point de I ainsi que n € N*. Si chacune des fonctions f et g est n fois dérivable
en a, alors le produit fg est n fois dérivable en a et la dérivée n-éme se calcule par :

n

19 @ =3 (1) 19 @ e

k=0



	Somme de sous-espaces vectoriels
	Applications linéaires
	Dérivabilité des fonctions
	Dérivabilité en un point
	Fonction dérivée
	Opérations sur les fonctions dérivables
	Opérations algébriques
	Composition
	Dérivation des bijections réciproques


	Propriétés globales des fonctions dérivables
	Une propriété cruciale : l'inégalité des accroissements finis
	Le(s) théorème(s) fondamental(aux) de l'analyse
	Une autre application : prolongement de fonction C1.

	Cas des fonctions à valeurs complexes
	Dérivées itérées
	Définitions et notations
	Calculs pratiques de dérivées itérées


