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Colles semaine 21

En bref

� Somme de sous-espaces vectoriels et sommes directes.
� Applications linéaires. Dé�nition et exemples systématiques en petite dimension.
� Noyau et Image d'une application linéaire. Notation Ker(f) et Im(f). Critère sur l'injectivité.
� La combinaison linéaire, la composée d'applications linéaires est encore linéaire. L'application

réciproque d'un isomorphisme est encore un isomorphisme.
� Dérivabilité des fonctions. Équivalence avec l'existence d'un développement limité d'ordre 1.
� Démonstration des formules de calculs de dérivées : combinaisons linéaires, produit, quotient,

composition et réciproque des application bijectives.
� Étude de la dérivabilité de fonctions dé�nies � par morceaux �. Théorème de prolongement C1

(s'appelle aussi théorème de limite de la dérivée)
� Propriétés globales des fonctions dérivables : théorème de Rolle, égalités et inégalités des ac-

croissements �nis.
� Cas des fonctions à valeurs complexes.
� Dérivées itérés, notation Ck(I,K) et formule de Leibniz.

Exemples non exhaustifs de questions de cours

Les étudiantes et étudiants se présentent à la colle en sachant répondre rapidement et précisément
à TOUTES les questions suivantes. Ils seront interrogés sur l'une d'entre elles.

� Dans M2(C) (voire Mn(C) pour n quelconque), donner une base de Ker(Tr) et montrer que
les sous-espaces vectoriels Ker(Tr) et Vect(In) sont supplémentaires.

� Pour une application linéaire f , rappeler la dé�nition de Ker(f) et Im(f) et montrer qu'il s'agit
de sous-espaces vectoriels.

� Montrer qu'une application linéaire f est injective si et seulement si Ker(f) = {0E}.
� Citer et montrer e théorème de Rolle.
� Montrer que la fonction f : x 7→ cos(

√
x) est de classe C1 sur [0 ; +∞] en appliquant le théorème

de prolongement C1.
� Citer sans démonstration l'inégalité des accroissements �nis. L'appliquer pour montrer que la

suite dé�nie par

{
u0 = 0

∀n ∈ N , un+1 =
1

un+
3
2

converge vers 1
2 .

Note aux colleurs

� Jusqu'à la �n de l'année, on commencera ou terminera la colle en demandant à chaque étudiant
de citer un développement limité au programme. On sanctionnera sévèrement en cas d'échec.

� Pour les sommes de sous-espaces vectoriels, le programme o�ciel demande de ne traiter que le
cas à deux sous-espaces vectoriels en première année. J'ai évidemment traité le cas général pour
éviter que les étudiants s'habitue trop au critère miraculeux sur l'intersection.
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En détail

1 Somme de sous-espaces vectoriels

Reprise du programme précédent.

2 Applications linéaires

Reprise du programme précédent.

3 Dérivabilité des fonctions

3.1 Dérivabilité en un point

Dé�nition 1. Soient a ∈ I et f : I → R une fonction.
On dit que fest dérivable en a si l'application

τa :
I − {a} → R

x 7→ f(x)−f(a)
x−a

admet une limite �nie en a. Dans ce cas, cette limite s'appelle le nombre dérivé de f en a et se
note f ′(a) ou df

dx (a).

Remarque 2. Quelques remarques sur cette dé�nition :
� Pour tout x ∈ I − {a}, le réel τa(x) s'appelle le taux d'accroissement de la fonction f entre

x et a. Que représente-t-il graphiquement ?
� Si f est dérivable en a, on a donc, quitte à changer de variable.

f ′(a) = lim
x→a

f(x)− f(a)
x− a

ou encore f ′(a) = lim
h→0

f(a+ h)− f(a)
h

� Le caractère dérivable d'une fonction en a est une propriété locale : si f et g sont deux fonctions
qui coïncident au voisinage de a, f est dérivable en a si et seulement si g l'est. Dans ce cas,
f ′(a) = g′(a).

Proposition 3 (Développement limité d'ordre 1). Soient a ∈ I et f : I → R une fonction.
Alors, f est dérivable en a si et seulement si il existe un réel α permettant d'écrire le développement
limité suivants (ils sont équivalents) :

f(x) =
x→a

f(a) + α(x− a) + o(x− a).

Dans ce cas, le nombre α véri�ant la formule est unique et vaut α = f ′(a).

Remarque 4. Commentons cette proposition :
� Par le même changement de variable que précédemment, ce développement limité est équivalent

au suivant :

f(a+ h) =
h→0

f(a) + αh+ o(h). (1)

� L'expression y = f(x) + f ′(a)(x− a) est l'équation d'une droite que l'on appelle tangente à la
courbe de f en a. C'est en un sens la "meilleure" approximation a�ne de f au voisinage de a.

Dé�nition 5 (Dérivabilité à gauche et à droite). Soient a ∈ I et f : I → R une fonction.
� On dit que f est dérivable à droite en a lorsque x 7→ f(x)−f(a)

x−a admet une limite �nie à
droite de a. On note alors f ′d(a) cette limite et on l'appelle la dérivée à droite de f en a.

� On dit que f est dérivable à gauche en a lorsque x 7→ f(x)−f(a)
x−a admet une limite �nie à

gauche de a. On note alors f ′g(a) cette limite et on l'appelle la dérivée à gauche de f en a.

Proposition 6. Soient a un point intérieur à I et f : I → R une fonction. Alors, f est dérivable en
a si et seulement si elle est dérivable à gauche et à droite en a et que f ′g(a) = f ′d(a).
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3.2 Fonction dérivée

Dé�nition 7 (Dérivabilité sur un intervalle, fonction dérivée). Soit f : I → R une application. On
dit que f est dérivable sur I si elle est dérivable en tout point de I. Dans ce cas, la fonction

f ′ :
I → R
x 7→ f ′(x)

s'appelle la fonction dérivée de f .

Remarque 8. Si f est dé�nie sur une réunion d'intervalles, on dit que f est dérivable si sa restriction
à chaque intervalle de la réunion est dérivable.

Proposition 9 (Dérivable implique continue). Si f : I → R est dérivable en a ∈ I, alors, f est
continue en a.

Remarque 10. Attention la réciproque est fausse. Exemple de x 7→ |x| qui est continue en 0 mais n'est
pas dérivable en 0.

3.3 Opérations sur les fonctions dérivables

3.3.1 Opérations algébriques

Proposition 11 (Opérations algébriques). Soient f, g : I → R deux fonctions dérivables en un point
a de I.

i) Pour tout (α, β) ∈ K2 la combinaison linéaire αf + βg est dérivable en a et

(αf + βg)′(a) = αf ′(a) + βg′(a)

ii) Le produit fg est dérivable en a et

(fg)′(a) = f ′(a)g(a) + f(a)g′(a)

iii) Si g ne s'annule pas en a, l'inverse 1
g est dé�ni sur un voisinage de a, est dérivable en a et(

1

g

)′
(a) =

−g′(a)
g2(a)

iv) Si g ne s'annule pas en a, le quotient f
g est dé�ni sur un voisinage de a et est dérivable en a et(

f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)
g2(a)

3.3.2 Composition

Proposition 12 (Dérivée d'une composition). Soient f : I → R et g : J → R deux applications et
a ∈ I. Si f est dérivable en a et si g est dérivable en b = f(a), alors g ◦ f est dérivable en a et

(g ◦ f)′(a) = g′ (f(a))× f ′(a).

Remarque 13. La proposition précédente ne donne qu'une condition su�sante pour la dérivabilité de
g ◦ f . Si f n'est pas dérivable en a ou g n'est pas dérivable en f(a), on ne peut rien conclure. Il faut
alors revenir à la dé�nition. On pourra, à titre d'exemple, étudier l'exercice ??.

3.3.3 Dérivation des bijections réciproques

Proposition 14 (Dérivée de la fonction réciproque en un point). Soit f : I → J une fonction bijective
et continue, b ∈ J et a = f−1(b). On suppose que f dérivable en a et que f−1 est continue en f(a).
Alors, f−1 est dérivable en b si et seulement si f ′(a) 6= 0, et, dans ce cas,

(f−1)′(b) =
1

f ′ (a)
=

1

f ′ (f−1(b))
.

Si la fonction est continue sur un intervalle I, on sait en fait déjà que la fonction réciproque est
continue. Ainsi :

Corollaire 15. Si f est un bijection dérivable d'un intervalle I sur un intervalle J . Alors, f−1 est
dérivable sur J si et seulement si f ′ ne s'annule pas sur I.
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4 Propriétés globales des fonctions dérivables

4.1 Une propriété cruciale : l'inégalité des accroissements �nis

Lemme 16 (Extremum local). Soit f : I → R une fonction dérivable et x0 un point intérieur à I (
C'est-à-dire que x0 6= inf(I) et x0 6= sup(I)). Si f admet un extremum local en x0, alors f ′(x0) = 0.

Également, le fait que x0 soit un point intérieur à I est crucial. Par exemple, la fonction
[0 ; 1] → [0 ; 1]
x 7→ x

admet un maximum local en 1, mais sa dérivée ne s'y annule pas.

Attention ! Bien sûr, ceci ne fournit qu'une condition su�sante pour l'existence d'un extremum local.
Par exemple, la fonction x 7→ x3 a une dérivée qui s'annule en 0 mais n'a pas d'extremum en 0.

Théorème 17 (Théorème de Rolle). Soit f une fonction dérivable sur un segment [a ; b] → R. Si
f(a) = f(b), alors il existe un réel c ∈ [a ; b] véri�ant f ′(c) = 0.

Application 18. Si un polynôme réel P de degré n admet n racines réelles , alors son polynôme dérivé
P ′ admet n− 1 racines réelles.

Théorème 19 (Égalité des accroissements �nis). Soit f une fonction dérivable sur un segment [a ; b]
à valeurs dans R. Il existe alors un réel c ∈ ]a ; b[ véri�ant f ′(c) = f(b)−f(a)

b−a .

Corollaire 20 (Inégalité des accroissements �nis, version avec majoration/minoration). Soit f une
fonction dérivable sur un segment [a ; b] → R. On suppose que la fonction dérivé f ′ véri�e ∀x ∈
[a ; b] , m 6 f ′(x) 6M . Alors, on peut écrire

m(b− a) 6 f(b)− f(a) 6M(b− a).

Théorème 21 (Inégalité des accroissements �nis, version alternative). Soient I un intervalle de R et
f : I → R une fonction dérivable sur I. S'il existe un réel M > 0 tel que

∀t ∈ I, |f ′(t)| 6M

alors,
∀(a, b) ∈ I2, |f(b)− f(a)| 6M |b− a|.

Le lecteur est invité à comprendre que cette inégalité des accroissements �nis ne dit pas autre
chose que la trivialité suivante � Si un cycliste possède une vitesse instantanée qui ne dépasse jamais
40 km.h−1 au cours de son trajet, alors sa vitesse moyenne est inférieure ou égale à 40 km.h−1 �

4.2 Le(s) théorème(s) fondamental(aux) de l'analyse

Théorème 22 (Lien entre sens de variations et signe de la dérivée). Soit f : I → R une fonction
dérivable.

� f est croissante sur I si et seulement si ∀x ∈ I, f ′(x) > 0.
� f est décroissante sur I si et seulement si ∀x ∈ I, f ′(x) 6 0.

Corollaire 23. Une fonction dérivable sur I est constante si et seulement si sa fonction dérivée est la
fonction nulle.

Proposition 24. Soit f une fonction dérivable sur un intervalle I. Cette fonction est strictement
croissante sur I si et seulement si ∀x ∈ R, f(x) > 0 et s'il n'existe aucun intervalle de longueur
strictement positive sur lequel f ′ est constante nulle.

Le lecteur adaptera tout seul cette proposition pour les fonctions strictement décroissante.

Proposition 25 (Unicité des primitives à une constante près). Si f et g sont deux fonction dérivables
sur un intervalle I et que f ′ = g′, alors il existe une constante C véri�ant ∀x ∈ I, f(x) = g(x) + C.
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Théorème 26 (Théorème fondamental de l'analyse). Soit f une fonction continue sur un intervalle
I et a ∈ I. Alors, il existe une unique primitive de f qui s'annule en a. De plus, cette fonction est
dé�nie de la manière suivante :

F : x 7→
∫ x

a
f(t)dt.

Remarque 27. Nous ne pouvons pour l'instant montrer que l'unicité de cette primitive. Pour montrer
son existence, il faut dé�nir l'intégrale indépendamment de la notion de primitive. Ceci se fait en
construisant l'intégrale comme la valeur de � l'aire sous la courbe �. Une telle dé�nition n'est toute-
fois pas si aisée et fera l'objet d'un chapitre ultérieur. Notons que l'on pourrait également admettre
l'existence de primitive et utiliser ce théorème pour dé�nir l'intégrale.

4.3 Une autre application : prolongement de fonction C1.

Théorème 28 (Théorème de prolongement C1 ou théorème de limite de la dérivée). Soit a, b deux
réels avec a < b. Soit également f une fonction dé�nie sur [a ; b[ et à valeurs réelles. On suppose que
les trois hypothèses suivantes sont satisfaites :

i) La fonction f est continue sur le � fermé � [a ; b[.

ii) La fonction f est de classe C1 sur l'ouvert ]a ; b[.

iii) La dérivée f ′ admet une limite �nie en a que l'on note ` = lim
x→a
x>a

f ′(x).

Alors, la fonction f est de classe C1 sur [a ; b[ et f ′(a) = `.

Remarque 29. Avec les mêmes hypothèses mais en supposant que la limite ` = lim
x→a
x>a

f ′(x) est in�nie, on

conclurait que la fonction f est non dérivable en a et qu'elle y admet une demi-tangente verticale.

5 Cas des fonctions à valeurs complexes

Dé�nition 30. Soient a ∈ I et f : I → C une fonction. On dit que fest dérivable en a si l'application
à valeur complexe

τa :
I − {a} → R

x 7→ f(x)−f(a)
x−a

admet une limite �nie complexe. Cette limite est alors le nombre dérivé de f en a, que l'on note f ′(a).

On peut se ramener au cas des fonctions réelles en séparant les parties réelles et imaginaires à l'aide
de la proposition suivante.

Proposition 31. Soient I un intervalle réel, a ∈ I et f : I → C une application. Alors,

f est dérivable en a (ou sur I) si, et seulement si, Re(f) et Im(f) le sont.

et dans ce cas,
f ′(a) = (Ref)′ (a) + i (Imf)′ (a).

Corollaire 32. Une fonction f : I → C est constante si, et seulement si, elle est dérivable avec une
dérivée nulle.

Explicitons maintenant les di�érences avec le cas réel.

Attention ! Les énoncés des théorèmes de Rolle et des accroissements �nis sont faux pour les fonctions
à valeurs complexes.
Pour s'en convaincre, considérer, par exemple, la fonction f : [0, 2π]→ C, x 7→ eix.

Proposition 33 (inégalité des accroissements �nis : version complexe). Soient I un intervalle de R
et f : I → C une fonction de classe C1. S'il existe un réel M > 0 tel que

∀x ∈ I, |f ′(x)| 6M

alors,
∀(a, b) ∈ I2, |f(b)− f(a)| 6M |b− a|.
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6 Dérivées itérées

6.1 Dé�nitions et notations

Dé�nition 34. Soit f : I → R une fonction. On dit que f est de classe C1 sur I si f est dérivable
sur I et si sa fonction dérivée f ′ est continue sur I.

Exemple 35. i) Les fonctions polynomiales, exponentielles, etc. sont de classe C1 sur R.

ii) La fonction f :
R → R

x 7→
{
x2 sin( 1x) si x 6= 0

0 si x = 0
est dérivable sur R mais pas de classe C1.

Dé�nition 36 (Dérivées successives). Soient a ∈ I et f : I → R une fonction. On dé�nit les dérivées
successives de f par récurrence. On pose f (0) = f . Pour un entier naturel n donné, on suppose la
fonction f (n) : I → R déterminée. Si f (n) est dérivable en a, on pose f (n+1)(a) =

(
f (n)

)′
(a), et si f (n)

est dérivable sur I, on pose f (n+1) =
(
f (n)

)′
.

Lorsqu'il existe, le nombre f (n)(a) s'appelle le nombre dérivé n-ième de fen a. On dit alors que
f est n fois dérivable en a.
Lorsqu'elle existe, la fonction f (n) s'appelle la dérivée n-ième de f . On dit alors que f est n fois
dérivable sur I.
On dit, de plus, que f est de classe Cnsur I si f (n) existe et est continue sur I.
Une fonction est dite de classe C∞sur I si elle est de classe Cn pour tout entier naturel n.

Remarque 37. On note Cn(I,R) ou Cn(I) l'ensemble des fonctions de classe Cn de I dans K, et C∞(I,R)
ou C∞(I) l'ensemble des fonctions de classe C∞ de I dans R. On note aussi f (n)(a) = dnf

dxn (a) et

f (n) = dnf
dxn .

6.2 Calculs pratiques de dérivées itérées

Proposition 38. Soit f et g deux fonctions de classe Cn sur I.

i) Pour tout couple (α, β) ∈ R2, la fonction (αf+βg) est de classe Cn et on a même (αf + βg)(n)(x) =
αf (n)(x) + βg(n)(x).

ii) Le produit fg est de classe Cn.
iii) Le quotient f

g (si g ne s'annule pas) est de classe Cn.
iv) La composée g ◦ f (si elle a un sens) est de classe Cn.

Proposition 39 (Formule de Leibniz). Soit I in intervalle de R ; f et g deux fonctions dé�nies sur R
à valeurs dans K ;a un point de I ainsi que n ∈ N∗. Si chacune des fonctions f et g est n fois dérivable
en a, alors le produit fg est n fois dérivable en a et la dérivée n-ème se calcule par :

(fg)(n) (a) =
n∑

k=0

(
n

k

)
f (k)(a)g(n−k)(a).

6


	Somme de sous-espaces vectoriels
	Applications linéaires
	Dérivabilité des fonctions
	Dérivabilité en un point
	Fonction dérivée
	Opérations sur les fonctions dérivables
	Opérations algébriques
	Composition
	Dérivation des bijections réciproques


	Propriétés globales des fonctions dérivables
	Une propriété cruciale : l'inégalité des accroissements finis
	Le(s) théorème(s) fondamental(aux) de l'analyse
	Une autre application : prolongement de fonction C1.

	Cas des fonctions à valeurs complexes
	Dérivées itérées
	Définitions et notations
	Calculs pratiques de dérivées itérées


