DM 03 séries numériques

BCPST SPé

à rendre le 6 octobre

On s'intéresse dans cet exercice, pour tout x de \mathbb{R} , à la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n+1}}{n^x}$.

- 1. Justifier que, pour tout x de \mathbb{R}^- , la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n+1}}{n^x}$ est divergente.
- 2. Soit $x \in \mathbb{R}^{+*}$. On note, pour tout $n \text{ de } \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k^x}$.
 - (a) Montrer que les suites $(u_{2p})_{p\in\mathbb{N}^*}$ et $(u_{2p-1})_{p\in\mathbb{N}^*}$ sont adjacentes, puis en déduire qu'elles convergent vers une même limite notée S(x).
 - (b) Que peut-on en déduire sur la nature de la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n+1}}{n^x}$?
 - (c) Justifier que : $\forall p \in \mathbb{N}^*$, $u_{2p} \leqslant S(x) \leqslant u_{2p+1} \leqslant u_{2p-1}$.
 - (d) En déduire que $\forall n \in \mathbb{N}^*$, $|S(x) u_n| \le \frac{1}{(n+1)^x}$. On pourra séparer les cas n pair et n impair.
 - (e) En déduire une fonction Python qui, étant donné deux réel x > 0 et $\varepsilon > 0$, renvoie une valeur approchée de S(x) à ε près.
- 3. Soient $x \in \mathbb{R}^{+*}$ et $p \in \mathbb{N}^*$. Montrer:

$$\sum_{k=1}^{2p} \frac{(-1)^{k+1}}{k^x} = \sum_{k=1}^{p} \frac{1}{(2k-1)^x} - \frac{1}{2^x} \sum_{k=1}^{p} \frac{1}{k^x},$$

puis:

$$\sum_{k=1}^{2p} \frac{(-1)^{k+1}}{k^x} = \sum_{k=1}^{2p} \frac{1}{k^x} - \frac{1}{2^{x-1}} \sum_{k=1}^{p} \frac{1}{k^x}.$$

- 4. On pose, pour tout $n \in \mathbb{N}^*$, $v_n = \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k}$.
 - (a) Soit $n \in \mathbb{N}^*$. Montrer que $v_n = \sum_{k=n+1}^{2n} \frac{1}{k}$, puis que $v_n = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}}$.

- (b) À l'aide du théorème des sommes de Riemann, déterminer la valeur de S(1).
- 5. On admet que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Déterminer la valeur de S(2).