Lycée Champollion, Grenoble

2025-2026 BCPST Spé 2

T.D. de Mathématiques

ESPACES VECTORIELS

Dans tout ce TD la lettre K désigne R ou C

Sous-espaces vectoriels

Exercice 1.

Déterminer si les ensembles suivants sont des sous espaces vectoriels? $de\mathbb{R}^2$.

1.
$$A = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } x + y - z = x + 2y + 3z = 0\}$$

2.
$$B = \{(x, y, z, t) \in \mathbb{R}^4 \text{ tels que } x + y - z + 3t = 1\}$$

3.
$$C = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } x + y^2 - z = 0\}$$

4.
$$D = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } x + y - z = 0\}$$

Exercice 2.

Les ensembles suivants sont ils des sous espaces vectoriels de $\mathbb{K}[X]$?

1.
$$A = \{ P \in \mathbb{K}[X] \text{ tel que } P(1) = 0 \}$$

2.
$$B = \{ P \in \mathbb{K}[X] \text{ tel que } P(1) = 3 \}$$

3.
$$C = \{ P \in \mathbb{K}[X] \text{ tel que } P' = 0 \}$$

4.
$$D = \{ P \in \mathbb{K}[X] \text{ tel que } P(1) = P(0) \}$$

5.
$$E = \{ P \in \mathbb{K}[X] \text{ tel que } P(1) \leqslant P(0) \}$$

6.
$$F = \{P \in \mathbb{K}[X] \text{ tel que } P \text{ admet } 1 \text{ comme racine double} \}$$

7.
$$G = \{P \in \mathbb{K}[X] \text{ tel que } P \text{ admet une racine double} \}$$

Exercice 3.

Soit I un intervalle de \mathbb{R} (avec les bonnes conditions). Les ensembles suivants sont ils des sous espaces vectoriels?

1.
$$A = \{ f \in \mathbb{R}^I \text{ tel que } f(1) = 0 \}$$

2.
$$B = \left\{ f \in \mathbb{R}^I \text{ tel que } f \text{ est continue } et \int_0^1 f(t) dt = 0 \right\}$$

3.
$$C = \{ f \in \mathbb{R}^I \text{ tel que } \lim_0 f = 0 \}$$

Exercice 4 (ensembles de matrices).

Les ensembles suivants sont ils des sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$?

1.
$$\mathscr{E}_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle/ a = d = 0 \right\}$$

1.
$$\mathscr{E}_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle/ a = d = 0 \right\}$$
 4. $\mathscr{E}_4 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle/ a^2 + b^2 = 0 \right\}$

2.
$$\mathscr{E}_2 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle/ a = d \right\}$$
 5. $\mathscr{E}_5 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle/ a = 1 \right\}$

5.
$$\mathscr{E}_5 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle/ a = 1 \right\}$$

3.
$$\mathscr{E}_3 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle/ a + b + c + d = 0 \right\}$$

Exercice 5 (ensembles de matrices).

Les ensembles suivants sont ils des sous-espace vectoriel de $\mathcal{M}_{n,n}(\mathbb{R})$?

1.
$$\mathcal{E}_1 = \left\{ M \in \mathcal{M}_{n,n}(\mathbb{R}) \middle/ M^{\mathrm{T}} = M \right\}$$

2.
$$\mathcal{E}_2 = \left\{ M \in \mathcal{M}_{n,n}(\mathbb{R}) \middle/ M^{\mathrm{T}} = -M \right\}$$

3.
$$\mathscr{E}_3 = \{ M \in \mathscr{M}_{n,n}(\mathbb{R}) / M^2 = 0 \}$$

4. A est une matrice carrée d'ordre n fixée, $\mathscr{E}_4 = \{M \in \mathscr{M}_{n,n}(\mathbb{R}) / AM = 0\}$

5.
$$\mathcal{E}_5 = \{ M \in \mathcal{M}_{n,n}(\mathbb{R}) / \text{La somme des coefficients diagonaux de } M \text{ vaut } 0 \}$$

Exercice 6 (\triangle).

Soit E un \mathbb{K} -ev.

1. Montrer à l'aide d'un contre exemple que si F et G sont des sous-espaces vectoriels de E, $F \cup G$ n'est pas forcément un sous espace vectoriel. On cherche maintenant une condition nécessaire et suffisante sur F et G pour que $F \cup G$ soit un sous-espace vectoriel de E

2. Condition????.

Montrer que si $F \cup G$ est un sous espace vectoriel alors :

$$F \subset G$$
 ou $G \subset F$

Indication: raisonnement par contraposée

3. Conclure

Exercice 7.

Les ensembles suivants sont ils des sous espace vectoriels de \mathbb{C} ?

- 1. $i\mathbb{R}$
- 2. $\{z \in \mathbb{C} \mid z = \overline{z}\}$
- 3. $\{z \in \mathbb{C} / z^2 \in \mathbb{R}\}$

Familles libres, familles génératrices

Exercice 8.

On pose $E = \mathbb{R}^3$ Soit

$$\mathcal{B}_1 = ((1,0,0), (1,1,0), (1,1,1))$$

$$\mathcal{B}_2 = ((1,2,1), (1,-1,1), (2,1,-1))$$

Montrer que \mathcal{B}_1 et \mathcal{B}_2 forment des bases de \mathbb{R}^3 et pour tout vecteur $(x, y, z) \in \mathbb{R}^3$ calculer les coordonnées de (x, y, z) dans chacune des bases.

Exercice 9 (Familles de polynômes).

Soit $E = \mathbb{R}_2[X]$, les familles suivantes sont elles des bases de E

1.
$$P_1 = 1$$
, $P_2 = 1 + X$ $P_3 = 1 + X + X^2$

2.
$$P_1 = X(X-1), P_2 = X(X+1), P_3 = X^2 - 1$$

3.
$$P_1 = 1 + X P_2 = 1 + X^2$$

4.
$$P_1 = 1 + X P_2 = X + X^2 P_3 = 1$$
 et $P_4 = X^2 - 1$

Exercice 10 (Familles de polynômes).

Soit $E = \mathbb{R}_3[X]$, les familles suivantes sont elles des bases de E

1.
$$P_1 = 1$$
, $P_2 = 1 + X$ $P_3 = 1 + X + X^2$ $P_4 = 1 + X + X^2 + X^3$

2.
$$P_1 = 1 + X$$
, $P_2 = X + X^2$ $P_3 = X^2 + X^3$ $P_4 = X^3$

3.
$$P_1 = (X-1)(X-2)(X-3)$$
 $P_2 = (X)(X-2)(X-3)$ $P_3 = X(X-1)(X-3)$ $P_4 = X(X-1)(X-2)$

4.
$$P_1 = X$$
, $P_2 = X^2 + 1$ $P_3 = 1 + X + X^3$

Exercice 11 (Familles de matrices).

Les familles suivantes forment elles des bases de $\mathcal{M}_2(\mathbb{R})$

1.
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

2.
$$\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

3.
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$, $\begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}$

4.
$$\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $\begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}$

Exercice 12.

On note $F = \{M \in \mathcal{M}_2(\mathbb{R}) / M^{\mathsf{T}} = M\}$ et $G = \{M \in \mathcal{M}_2(\mathbb{R}) / M^{\mathsf{T}} = -M\}$

1. Montrer que
$$F = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} \middle/ a, b, b \in \mathbb{R} \right\}$$

2. Montrer que
$$G = \left\{ \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} \middle/ a \in \mathbb{R} \right\}$$

- 3. Trouver une base de F et une base de G
- 4. Montrer que pour toute matrice M de $\mathcal{M}_2(\mathbb{R})$ il existe une unique matrice $M_F \in F$ et une unique matrice $M_G \in G$ telles que $M = M_F + M_G$.

Exercice 13 (Généralisation de 12).

Soit $n \in \mathbb{N}^*$, on note

$$\mathcal{E}_n = \mathcal{M}_{n,n}(\mathbb{K}) \qquad \mathcal{S}_n = \left\{ M \in \mathcal{E}_n \middle/ M^{\mathsf{T}} = M \right\} \qquad \mathcal{A}_n = \left\{ M \in \mathcal{E}_n \middle/ M^{\mathsf{T}} = -M \right\}$$

- 1. Montrer que \mathcal{A}_n et \mathcal{S}_n sont des sous-espace vectoriel de \mathcal{E}_n
- 2. Trouver une matrice A telle que $A \notin \mathcal{A}_n \cup \mathcal{S}_n$
- 3. Montrer que pour toute matrice M de \mathscr{E}_n il existe une unique matrice $S \in \mathscr{S}_n$ et une unique matrice $A \in \mathscr{A}_n$ telles que $M = A + S_G$. On pourra raisonner par analyse synthèse

Exercice 14.

Soit $x_1 = (1, 0, ..., 0) \in \mathbb{K}^n$, $x_2 = (1, 1, 0, ..., 0) \in \mathbb{K}^n$. $x_2 = (1, 1, 1, ..., 1) \in \mathbb{K}^n$. Étudier la famille $(x_1, ..., x_2)$.

Exercice 15.

Soit $P_1, P_2, ..., P_n$ une famille de n polynômes à une indéterminé à coefficients dans \mathbb{K} . On suppose que les degrés des P_i sont strictement croissants et $P_1 \neq 0$.

- 1. Montrer que la famille est libre.
- 2. Est elle forcément génératrice?
- 3. Trouver une famille de polynômes (avec plus d'un polynôme) dont tous les éléments sont de même degré et qui soit libre (on se placera dans $\mathbb{K}_2[X]$

Exercice 16.

Soit (e_1, e_2, e_3, e_4) une famille d'un \mathbb{K} -espace vectoriel E. On note

$$f_1 = e_1$$
 $f_2 = e_2 + e_1$ $f_3 = e_3 + e_1$ $f_4 = e_4 + e_1$

- 1. On suppose que (e_1, e_2, e_3, e_4) est libre, montrer que (f_1, f_2, f_3, f_4) est libre.
- 2. On suppose que (e_1,e_2,e_3,e_4) est génératrice de E, montrer que (f_1,f_2,f_3,f_4) est génératrice de E

Exercice 17.

En s'inspirant des procédés vus en classe.

- 1. On pose $e_1 = (1, 1, 0, 0)$ et $e_2 = (-1, 1, -1, 1)$ compléter e_1, e_2 en une base de \mathbb{R}^4
- 2. On pose $e_1=(1,1),\ e_2=(-1,1),\ e_3=(1,0),\ e_4=(1,2)$ réduire (e_1,e_2,e_3,e_4) en une base de \mathbb{R}^2

Exercice 18.

On note E l'espace vectoriel des application continues sur \mathbb{R} à valeurs dans \mathbb{R} .

- 1. la famille (cos, sin) est elle libre? Est elle une famille génératrice de *E*?
- 2. Montrer que la famille $\left(x\mapsto \mathrm{e}^{kx}\right)_{k\in [\![0,n]\!]}$ est libre (pensez au théorème des croissances comparées ou au principe d'identification) . Est ce une famille génératrice de E?

Exercice 19 (\triangle). 1. Pour p et q deux entiers naturels calculer

$$I_{p,q} = \int_0^{\pi} \cos(px) \cos(qx) \, \mathrm{d}x$$

2. Montrer que pour n un entier naturel non nul la famille $(x \mapsto \cos(x), x \mapsto \cos(2x), ..., x \mapsto \cos(nx))$ est libre (faire une récurrence). Est ce une famille génératrice de E?

Exercice 20 (📤).

Soit E un \mathbb{K} -espace vectoriel et $\mathscr{F} = (x_1, \dots, x_n)$ une famille de vecteurs de E, on note

$$\varphi: \mathbb{K}^n \to E$$

$$(\lambda_1, \dots, \lambda_n) \mapsto \lambda_1 \cdot x_1 + \dots + \lambda_n \cdot x_n$$

- 1. Montrer que φ est injective si et seulement si $\mathscr F$ est libre/génératrice (rayer la mention inutile).
- 2. Montrer que φ est surjective si et seulement si $\mathscr F$ est libre/génératrice (rayer la mention inutile).
- 3. Trouver une CNS pour que ${\mathcal F}$ soit une base

Exercice 21.

Calculer la dimension de A.

1.
$$E = \mathbb{R}^3$$
, $A = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 0\}$.

2.
$$E = \mathbb{R}^3 A = \{(x, y, z) \in \mathbb{R}^3 / x - y + z = x + 2y = 0\}$$

3.
$$E = \mathbb{C}_3[X] \ A = \{P \in \mathbb{C}_3[X] \ / P' = 0\}$$

4.
$$E = \mathbb{R}_4[X]$$
 $A = \{P \in \mathbb{R}_4[X] / P(0) = P(1) = P(2) = 0\}$

Exercice 22.

Calculer le rang des familles suivantes, en déduire leurs caractéristiques.

- 1. dans \mathbb{R}^3 $e_1 = (1, 1, 1), e_2 = (1, 1, 2), e_3 = (2, 1, 1), e_4 = (1, 2, 1)$
- 2. dans \mathbb{C}^4 $e_1 = (1, 1, 0, 0)$ $e_2 = (1, 0, 1, 0)$, $e_2 = (1, -1, 1, -1)$, $e_4 = (1, 1, 1, 1)$
- 3. dans $\mathbb{R}_3[X] X, X^2 X, X^3 X^2, X^3 X$

Exercice 23.

Pour $\alpha \in \mathbb{R}$ on note \mathcal{H}_{α} la famille

$$\mathcal{H}_a = ((1, -1, 0, 2), (1, 0, 1, 2), (1, 3, 5, 7), (0, 2, 3, \alpha))$$

calculer en fonction de α le rang de \mathcal{H}_{α}

Exercice 24 (\(\(\(\) \(\) \(\)).

Soit A et B deux sev de E un \mathbb{K} -ev de dimension finie. Montrer que $A \cap B$ est de dimension finie et majorer Dim $A \cap B$)

Exercice 25.

Soit F l'ensemble des matrices 2×2 vérifiant

$$F = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle/ b + c + d = 0 \right\}$$

- 1. Montrer que F est un sous espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
- 2. Trouver une base de *F*
- 3. Même question avec $F' = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle/ a + d = b + c \right\}$

Exercice 26.

Soit $E=\mathbb{R}_4[X]$ et a,b deux réels distincts. On désigne par F l'ensemble des polynômes de E dont a et b sont racines. Montrer que F est un sous-espace vectoriel de E. En donner une base.

Exercice 27.

Soit *E* l'ensemble des fonctions de classe \mathscr{C}^2 sur \mathbb{R} et $F = \{ f \in E / f'' = 2 f' - f \}$

- 1. Montrer que *F* est un sous-espace vectoriel de *E*
- 2. Montrer que $F \neq E$.
- 3. Soient les fonctions définies pour x réel par

$$f_1(x) = e^x$$
 $f_2(x) = xe^x$

Montrer que f_1 f_2 forment une famille libre de F.

Matrices: calculs

Exercice 28.

Soit $\lambda_1, \dots \lambda_n$ des réels non nuls. Calculer l'inverse de la matrice diagonale.

$$\left(egin{array}{cccc} \lambda_1 & 0 & \cdots & 0 \ 0 & \ddots & & dots \ dots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & \lambda_n \end{array}
ight)$$

Exercice 29.

Montrer que
$$\forall n \ge 0$$
, $A^n = \begin{pmatrix} a^n & 0 & 0 \\ 0 & b^n & 0 \\ 0 & 0 & c^n \end{pmatrix}$ où $A = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$.

Exercice 30.

Montrer que
$$\forall n \ge 1$$
, $J^n = 6^{n-1}J$ où $J = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$

Exercice 31.

Soit *A* la matrice
$$\begin{pmatrix} 6 & 4 & 0 \\ -4 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 et $A = B + 2I$

Calculer B^2 puis, à l'aide de la formule du binôme de Newton, calculer A^n .

Exercice 32.

Pour chacune des matrices suivantes, exprimer A sous la forme I + B puis calculer A^n en utilisant la formule du binôme :

1.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$
2. $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$
3. $A = \begin{pmatrix} 1 & 2 & 6 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$
4. $A = \frac{1}{3} \begin{pmatrix} 4 & 1 \\ 2 & 5 \end{pmatrix}$

Exercice 33.

On considère les matrices
$$A = \begin{pmatrix} 5 & 1 & 2 \\ -1 & 7 & 2 \\ 1 & 1 & 6 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$

1. Montrer que l'inverse de *P* est

$$\begin{pmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

2. Déterminer la matrice *D* telle que $A = PDP^{-1}$.

3. Montrer que $\forall n \in \mathbb{N}$, $A^n = PD^nP^{-1}$ et explicter A^n .

Exercice 34.

On considère la matrice A suivante : $\begin{pmatrix} -2 & 1 & 1 \\ 6 & -2 & -4 \\ -4 & 1 & 3 \end{pmatrix}$

1. Calculer A^2 , A^3 et montrer que : $A^3 = 6A - A^2$

- 2. Prouver que $\forall n \in \mathbb{N}^*$, il existe des réels a_n et b_n tels que : $A^n = a_n A^2 + b_n A$ Donner a_1, b_1, a_2, b_2, a_3 et b_3 .
- 3. Montrer que a est une suite récurrente d'ordre 2 puis expliciter a_n en fonction de n.
- 4. En déduire l'expression de b_n et déterminer tous les coefficients de la matrice A^n

Exercice 35.

Soit
$$A = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$$
 calculer $A^2 - 3A + 4I_2$ puis A^{-1} .

Exercice 36.

Calculer l'inverse des matrices suivantes.

1.

$$\left(egin{array}{cccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}
ight)$$

- 1. dans $\mathbb{R}_3[X]$ de la base canonique à $(1, 1+X, 1+X^2, 1+X^3)$
- 2. dans $\mathbb{R}_2[X]$ de la base $(1, 1+X, 1+X^2)$ à la base (X(X-1), X(X+1), (X+1), (X+1), (X-1)).
- 3. Dans \mathbb{R}^3 de ((1,2,1),(1,0,1),(0,2,2)) à ((1,1,1),(1,1,0),(1,0,0))
- 4. dans E de (e_1, \dots, e_n) à $(e_n, e_{n-1}, \dots, e_1)$
- 5. dans E de (e_1, \dots, e_n) à $(e_1, e_1 + e_2 \dots, e_1 + e_n)$

Matrices: théorie

Exercice 38 (Opérations sur les lignes et les colonnes).

On note $(E_{i,j})_{i,j}$ la base canonique de l'ensemble $\mathcal{M}_n(\mathbb{K})$

1. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$; Calculer

$$E_{i,j}A$$

2. Soit

$$T_{i,j} = I_n - E_{i,i} - E_{j,j} + E_{i,j} + E_{j,i}$$

- (a) Donner une forme explicite de $T_{i,j}$.
- (b) Calculer $T_{i,j}A$
- (c) Calculer $T_{i,j}^{-1}$
- 3. Soit $\lambda \in \mathbb{K}$ et $L_{i,j} = I_n + \lambda E_{i,j}$
 - (a) Donner une forme explicite de $L_{i,j}$.
 - (b) Calculer $L_{i,j}A$
 - (c) Calculer, quand elle existe, $L_{i,j}^{-1}$
- 4. Que ce passe t'il si on remplace les multiplications à gauche par des multiplications à droite?

Rang: calculs

Exercice 39.

Calculer le rang des matrices suivantes

$$1. \begin{pmatrix} 1 & 2 & -4 & -2 & -1 \\ 0 & -2 & 4 & 2 & 0 \\ 1 & 1 & -2 & -1 & 1 \end{pmatrix}$$

1.
$$\begin{pmatrix} 1 & 2 & -4 & -2 & -1 \\ 0 & -2 & 4 & 2 & 0 \\ 1 & 1 & -2 & -1 & 1 \end{pmatrix}$$
 2.
$$\begin{pmatrix} 0 & -1 & 2 & -2 \\ -7 & -7 & 2 & -8 \\ 0 & 4 & -6 & 6 \\ 2 & -2 & 0 & -2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}$$

3.
$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

4.
$$\left(\begin{array}{cc} 1 & a \\ \\ 1 & b \end{array}\right)$$

5.
$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 1 \\ 0 & -1 & -1 & 1 \end{pmatrix}$$

6.
$$\begin{pmatrix} 1 & \overline{z} & \overline{z}^2 \\ z & 1 & \overline{z} \\ z^2 & z & 1 \end{pmatrix}$$

7.
$$\begin{pmatrix}
0 & \cdots & 0 & 0 & \lambda_1 \\
0 & \cdots & 0 & \lambda_2 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \lambda_{n-1} & 0 & \cdots & 0 \\
\lambda_n & 0 \cdots & \cdots & \cdots & 0
\end{pmatrix}$$

Exercice 37.

Écrire les matrices de passage de \mathcal{B} à \mathcal{B}' dans les cas suivants

$$3. \begin{pmatrix} 1 & 7 & 2 & 5 \\ -2 & 1 & 1 & 5 \\ -1 & 2 & 1 & 4 \\ 1 & 4 & 1 & 2 \end{pmatrix}.$$

5. rg
$$\begin{pmatrix} 1 & -1 & 0 & 1 \\ m & 1 & -1 & -1 \\ 1 & -m & 1 & 0 \\ 1 & -1 & m & 2 \end{pmatrix}$$
 en fonction de $m \in \mathbb{C}$.

$$\begin{pmatrix} 1 & 4 & -1 & 2 & 4 \\ 2 & 0 & -3 & -1 & 7 \\ 0 & 0 & 0 & 1 & 4 \end{pmatrix}$$
6. rg
$$\begin{pmatrix} 2 & 4 & -5 & -7 \\ -1 & 3 & 1 & 2 \\ 1 & a & -2 & b \end{pmatrix}$$
fonction do get h

Exercice 40.

On considère la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 6 & -5 & 6 \\ 3 & -3 & 4 \end{pmatrix}$

1. Montrer que pour tout entier $n \in \mathbb{N}$, il existe un réel a_n tel que

$$A^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 2a_{n} & 1 - 2a_{n} & 2a_{n} \\ a_{n} & -a_{n} & a_{n} + 1 \end{pmatrix}.$$

- 2. Montrer que la suite *a* est arithmético-géométrique.
- 3. En déduire a_n en fonction de n puis donner l'expression A^n en fonction de n

Exercice 41.

Soit (e_1, e_2, e_3) une famille d'un \mathbb{K} -espace vectoriel E et \mathscr{B} une base de E. Soit A la matrice de la famille (e_1, e_2, e_3) .

1. On suppose qu'après avoir effectuer l'opération $C_2 \leftarrow C_2 - 2C_1$ puis $C_3 \leftarrow C_3 - 3C_2$ on ai transformé A en une matrice du type

$$\begin{pmatrix} * & * & 0 \\ \vdots & \vdots & \vdots \\ * & * & 0 \end{pmatrix}$$

Exprimer e_3 en fonction de de e_2 et e_1

2. En déduire une méthode générale pour trouver des combinaisons linéaires dans une famille liée