Programme d'interrogation orale de mathématiques

BCPST spé 2

Semaine 09: du lundi 24 novembre au vendredi 28 novembre 2025

Structure des interrogations

Au début de l'interrogation, vous devez demander à chaque étudiant∙e

- 1. Une question de cours
- 2. ET une démonstration.
- 3. ET un exercice court de révision sur les matrices.

Révisions

Systèmes linéaires et calcul matriciel : produit de matrices, inversion de matrices, écriture matricielle d'un système, puissance de matrices...

Concepts de base en probabilités

Variables aléatoires discrètes

Complexes et polynômes sur $\mathbb R$ ou $\mathbb C$

1. Rappels sur les complexes.

Les polynômes sont désormais écrits sous la forme $\sum a_k X^k$ avec les coefficients nuls à partir d'un certain rang

- 2. \clubsuit Ensemble $\mathbb{R}[X]$, $\mathbb{K}[X]$, $\mathbb{C}[X]$
- 3. St opérations + , x dérivation, composition
- 4. degré, opérations et degré
- 5. $\ \ \,$ Ensemble $\mathbb{R}_n[X], \mathbb{K}_n[X], \mathbb{C}_n[X]$
- 6. Racine d'un polynôme, factorisation par $X \alpha$
- 7. Racines multiples. α est une racine multiple de de P si et seulement si $P(\alpha) = P'(\alpha) = 0$
- 8. \clubsuit Théorème de d' Alembert Gauss. Factorisation dans $\mathbb{C}[X]$
- 9. Les racines complexes d'un polynôme à coefficients réels sont conjuguées.
- 10. \clubsuit Pratique de la factorisation dans $\mathbb{R}[X]$ pas de résultat théorique.

Démonstrations exigibles

- 1. Soit $X \hookrightarrow \mathcal{P}(\lambda)$: vérifier par le calcul que $\sum_{k \in \mathbb{N}} \mathbb{P}(X = k) = 1$, calcul de l'espérance et de la variance de X.
- 2. α est racine de $P \in \mathbb{K}[X]$ si et seulement si il existe $Q \in \mathbb{K}[X]$ tel que $P = (X \alpha)Q$. On commencera par démontrer que dans le cas général P s'écrit sous la forme $P = P(\alpha) + (X \alpha)Q$.
- 3. α est racine multiple de $P \in \mathbb{K}[X]$ si et seulement si $P(\alpha) = P'(\alpha) = 0$. On commencera par démontrer que dans le cas général P s'écrit sous la forme $P = P(\alpha) + (X \alpha)P'(\alpha) + (X \alpha)^2R$, on pourra utiliser les résultats de la démonstration précédente.

Documents

L'ensemble des documents distribués se trouvent à https://cahier-de-prepa.fr/spebio2-champollion/