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Dans tout ce cours K désigne R ou C. E , F désignent des espaces-vectoriels sur K.

I Applications linéaires

I.1 Définitions

Définition 1 (Application linéaire).
Soit E et F deux espaces vectoriels et f une application de E vers F .
Alors on dit que f est une application linéaire si et seulement si✒

∀u ∈ E , ∀v ∈ E , ∀λ ∈R, ∀µ ∈K f (λ ·u+µ ·v) = λ · f (u)+µ · f (v)

Notations
On dit aussi que f est un (homo)morphisme d’espace vectoriel.
L’ensemble des applications linéaires de E vers F est noté L (E ,F ).

Exemple :

• La fonction définie sur K2 par s(x, y) = (x + y, x − y) est une application linéaire.

• L’application

ϕ : R3 → R3

(x, y, z) 7→ (x + y, x + z, z + y)

est une application linéaire.

• La dérivation dans K[X ] :

∆ : K[X ] → K[X ]

P 7→ P ′
est une application linéaire.

• Soit I un intervalle de R

Φ : C ∞(I ) → C ∞(I )

ϕ 7→ ϕ′
est une application linéaire.

• L’application ϕ de K2 dans lui même définie par ϕ(x, y) 7→ (x2,−y) n’est pas linéaire.

• La transposition de matrice est une application linéaire de Mn (K) dans lui même.

Proposition 1 (Autres caractérisations de la linéarité).
Soit f une application d’un espace-vectoriel E dans un espace-vectoriel F . Les trois propriétés suivantes sont équivalentes :

1. f est linéaire✒
2. ( un seul scalaire)

∀u ∈ E , ∀v ∈ E , ∀λ ∈K f (λu+v) = λ f (u)+ f (v)

3. ( + et . traités séparément )✒

∀u ∈ E , ∀v ∈ E , ∀λ ∈K f (u+v) = f (u)+ f (v) et f (λu) = λ f (v)
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Proposition 2 (Premières propriétés).
Soit E et F deux espaces vectoriels alors :✒

• f ∈L (E ,F ) alors f (0E) = 0F .

• Si f ∈L (E ,F ) et si u1, u2. . ., un sont des vecteurs et λ1,. . .,λn sont des scalaires :

f

(
n∑

i=1
λi ·ui

)
=

n∑
i=1

λi · f (ui) .

Définition 2 (Applications linéaires particulières).

• Un endomorphisme est une application linéaire de E dans lui même.
L’ensemble des endomorphismes de E est noté L (E)

• Un isomorphisme est une application linéaire bijective.

• Un automorphisme de E est un endomorphisme bijectif de E. L’ensemble des automorphismes de E est est noté
GL(E).

Définition 3 (Composées itérées d’un endomorphisme).
Soit f ∈L (E) et n un entier naturel . On note

f n =


idE si n = 0

f ◦ f ◦ f · · · ◦ f︸ ︷︷ ︸
n fois

sinon

On a de façon équivalente

f n =

idE si n = 0

f ◦ f n−1 sinon
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Méthode linéarité d’une application

Si on vous demande de prouver qu’une application f : E 7→ F est linéaire et si l’on sait déjà que E et
F sont des espaces vectoriels.

1. Il faut commencer par bien choisir les variables utilisées.

Par exemple si on manipule des polynômes, on choisira comme vecteurs P et Q. Si on manipule
des vecteurs de K2, u = (x, y) et v = (x′, y ′). Dans K3, u = (x, y, z) et v = (x′, y ′, z′). Si l’énoncé
propose des notations, on essaye de les respecter.

2. On vérifie l’une des deux caractérisations de la proposition 1.

3. On commence par écrire,en remplaçant ∇ et □ par les bonnes notations : « Soit ∇ dans . . . et □
dans . . . et λ un réel ou un complexe

f (λ□+□) = on calcule λ□+∇
= on utilise la définition de f donnée dans l’énoncé

= on fait des simplifications

...

=λ f (□)+ f (∇) sans tricher ! et en utilisant la définition de f

Méthode NON linéarité d’une application

Si on vous demande de prouver qu’une application n’ est pas linéaire.
1. On commence par calculer f (0E), en utilisant bien le vecteur nul de l’espace vectoriel de dé-

part. Si on a de la chance on constate que f (0E) ̸= 0F et on peut conclure que f n’est pas linéaire.

2. Si f (0E) = 0F il faut continuer et chercher un contre-exemple à la linéarité

• Soit trouver un scalaire λ et un vecteur □ tels que f (λ□) ̸= λ f (□). On cherche souvent
des contre-exemples simples, on commence par essayer avec λ=−1,

• Soit trouver deux vecteurs □ et ∇ tels que f (□+∇) ̸= f (□)+ f (∇). On cherche souvent des
contre-exemples simples.

Une fois le contre-exemple trouvé (il peut déjà être donné indirectement dans les questions
précédentes !) on peut conclure que f n’est pas linéaire.

I.2 Structure de L (E) et L (E ,F )

Proposition 3 (Combinaison linéaire d’applications linéaires).
Soit E et F deux K-espaces vectoriels , alors

L (E , F ) est un K-espace vectoriel .

Démonstration :
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O

Proposition 4 (Composition).
Soit E, F et G trois K espaces-vectoriels.
Soit f une application linéaire de E vers F et g une application linéaire de F vers G, alors : ◦ est une appli-✒
cation linéaire de E vers G

Démonstration :

O

Proposition 5 (Bijection réciproque).
Soit f un isomorphisme de E dans F , alors f −1 est une application linéaire de F dans E.

Démonstration :

O

I.3 Noyaux et images

Définition 4 (Noyau et image).
Soit f ∈L (E ,F ).
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• On appelle noyau de f et on note Ker ( f ), l’ensemble défini par

Ker ( f ) = {
v ∈ E

/
f (v) = 0F

}
( Ker pour kern ou kernel)

• On appelle image de f et on note Im f , l’ensemble défini par

Im f = {
w ∈ F

/ ∃v ∈ E , f (v) = w
}= {

f (v) où v parcourt E
}

.

Méthode de rédaction pour le calcul du noyau de ϕ

Si on sait que ϕ est une application linéaire d’un espace vectoriel E dan un autre espace vectoriel.
• On commence par bien choisir les bonnes notations.

• Le début de la rédaction commence obligatoirement par « Soit □ ∈ E , □ ∈ Ker ϕ si et seule-
ment si ϕ(□) = 0 »

• On remplace alors ϕ par la définition donnée dans l’énoncé

• On raisonne avec des si et seulement si ou des ⇔ en résolvant l’équation apparue au point
précédent jusqu’à obtenir la forme la plus simple possible.

Proposition 6 (structure du noyau et de l’image).
Soit f : E → F une application linéaire, alors Ker ( f ) est un sous-espace vectoriel de E
et Im f est un sous-espace vectoriel de F .✒

Démonstration :

O

Exemple :

• L’ensemble des applications définies et dérivables sur un intervalle I qui vérifient

∀x ∈ I f ′(x)+x · f (x) = 0

est le noyau de

∆ : C 1(I ) → C 0(I )

f 7→ (x 7→ x f (x)+ f ′(x))
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Méthode (plus rare) pour montrer que F est un (sous)-espace vectoriel d’un espace vectoriel E

1. Si F est donné directement sous la forme d’un noyau F = Ker ϕ et que l’on a montré précé-
demment que ϕ vous pouvez conclure par « F étant le noyau d’une application linéaire, c’est
un sous-espace vectoriel de E donc un espace vectoriel ».

2. Si F est donné par une écriture de la forme F = {□ ∈/· · · = 0} on peut prendre l’initiative d’es-
sayer de trouver une application linéaire ϕ telle que F = Ker ϕ

Exercice 1.
Calculer les noyaux et les images des applications suivantes

f : R3 → R=3 [X ]

(x, y, z) 7→ (x + y, x + z,0)

f : R3 → R

(x, y, z) 7→ x + y − z

Proposition 7 (Lien entre noyau et injectivité, Image et surjectivité).
Soit f ∈L (E ,F )

f est injective si et seulement si Ker ( f ) = {0E }.

f est surjective si et seulement si Im ( f ) = F.

Démonstration :
✒

O

II Dimension finie

Dans cette partie sauf indication contraire, les espaces vectoriels sont de dimension finie.

II.1 Image d’une base

Théorème 1 (Famille génératrice de l’image).
Soit f ∈L (E ,F ) avec E de dimension finie. Soit (e1,e2, . . . ,ep) une base de E. Alors

Im f = Vect
(

f (e1), f (e2), . . . , f (ep)
)

L’image d’une base par une application linéaire est une famille génératrice de l’image.
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Démonstration :

O

Exemple : Calculons Im f où f : R3[X ] → R3[X ]

P 7→ P (X +1)−P (X −1)

Proposition 8.
Soit f un isomorphisme de E vers F où E est un espace vectoriel de dimension finie, alors F est aussi de dimension finie et
Dim F = Dim E.

Théorème 2 (Détermination d’une application linéaire par l’image d’une base).
Soir E de dimension finie. Soit (e1,e2, . . . ,ep) une base de E. Soit (f1, f2, . . . , fp) une famille de F . Il existe une et une seule
application linéaire f ∈L (E ,F ) telle que

∀i ∈ J1, nK f (ei) = fi

Démonstration :

O

Exemple : Quel est l’unique endomorphisme de K2[X ] tel que f (1) = 0, f (X ) = 2 et f (X 2) = X ?
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Théorème 3 (Kn ).
Si E est un espace vectoriel de dimension n alors il existe un isomorphisme de E vers Kn . On dit alors que E et K n sont
isomorphes.

Démonstration :

O

II.2 Rang d’une application linéaire

Définition 5 (Rang d’une application linéaire).
On appelle rang d’une application linéaire f et on note rg ( f ) la dimension de l’image de f .

rg ( f ) = Dim Im f

Théorème 4 (Le théorème du rang).
Soit f : E → F une application linéaire où E est un espace vectoriel de dimension finie.
On a alors :

dim(Im f )+dim(Ker f ) = dim(E).

Exemple :
Soit l’application linéaire f : R3 → R3 définie par f (x, y, z) = (y − z,−x + z, x − y), alors Ker f = Vect((1,1,1)) donc

dim(Im f ) = 2.

Théorème 5 (Injectivité et surjectivité).
Soit f E → F une application linéaire, où E et F sont des espaces vectoriels de même dimension finie.
Alors les trois propriétés suivantes sont équivalentes

1. f est injective.

2. f est surjective.

3. f est bijective.
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Méthode pour montrer qu’un endomorphisme est bijectif

Si f est un endomorphisme d’un espace vectoriel de dimension finie E et si on doit montrer que f
est un automorphisme (i.e. bijective). Il suffit :

• De vérifier que f est injective (par exemple en étudiant Ker f ) et de rappeler que E est de
dimension finie.

• Ou bien De vérifier que f est surjective (par exemple en étudiant Im f ) et de rappeler que E
est de dimension finie.

III Matrice

III.1 Matrice d’une application linéaire

III.1.a Définition

Soient E et F deux espaces vectoriels de dimension finie, f : E −→ F une application linéaire, B = (
e1, . . . ,ep

)
une

base de E et B′ = (f1, . . . , fn) une base de F .
Pour tout vecteur v = x1 ·e1 +·· ·+xp ·ep (les xi sont les coordonnées de v dans la base B), on a :✒

f (v) = f (x1 ·e1 +·· ·+xp ·ep) = x1 · f (e1)+·· ·+xp · f (ep) = y1 · f1 +·· ·+ yn · fn

où les yi sont les coordonnées de f (v) dans la base B′.
Si on écrit les coordonnées des vecteurs en colonnes, cette égalité s’écrit :✒

f (e1) f (ep)
y1
...

yn


f1
...

fn

= x1


a1,1

...

an,1

 + ·· · · · ·+ xp


a1,p

...

an,p


f1
...

fn

Donc✒ 
y1
...
...

yn

=


a1,1 · · · a1,p

...
...

...
...

a1,n · · · an,p




x1
...
...

xp

 .

Les coordonnées des vecteurs f (ei) suffisent donc à calculer l’image f (v) de tout vecteurs v dont on connaît les
coordonnées dans la base B :
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Proposition 9 (Écriture matricielle d’une application linéaire).
Soient E, F deux espaces vectoriels de dimension finie, B = (e1, · · · ,ep) une base de E, B′ = (f1, · · · , fn) une base de
F et f : E → F une application linéaire.
Si on note

• XB la matrice colonne des coordonnées du vecteur v dans la base B

• YB′ la matrice colonne des coordonnées de l’image f (v) dans la base B′,
alors on a la relation :

f (e1) . . . f (ep)
y1
...

yn

 =




f1
...

fn


x1
...

xp



︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸
Y = A X

où la matrice à n lignes et p colonnes A = (A1, · · · , Ap ) est la matrice où les colonnes A j sont les coordonnées dans
la base B′ des vecteurs f (ej)).
La matrice A s’appelle la matrice de l’application linéaire f de la base B vers la base B′, on la note

A = MatB′,B( f ).

Ce que l’on peut représenter de la manière suivante

E F

x y = f (x)

X =


x1
...

xp

 Y = AX =


y1
...

yn


Mp,1(K) Mn,1(K)

f

calcul direct

calcul des coordonnées de
x dans la base B
x = x1 ·e1 +·· ·+xp ·ep

calcul de y à l’aide des co-
ordonnées dans la base C
y = y1 · f1 +·· ·+ yn · fn

multiplication par A

X 7→ AX
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Méthode pour donner la matrice d’une application linéaire.

f (e1) . . . f (ep)


f1
...

fn

Remarque :
Si B =B′, on note MatB( f ) au lieu de MatB,B( f ) et on dit matrice de f dans la base B.

Attention : Cette notation apparaît dans le programme contrairement à MatB′,B( f ), aucune notation n’est donnée poure
le cas général. Dans les problèmes, on introduit dans la majorité des cas la matrice avec une phrase et la notation n’est
pas utilisée.

Exercice 2.
Soit idE : E → E l’application identité et B une base de E montrer que MatB(idE ) = I où I désigne la matrice identité.

Attention : il faut que la base de départ et la base d’arrivée soient les mêmes!e
Exercice 3.
Calculer les matrices des applications linéaires suivantes

1. Soit f : R3 → R2 définie par f (x, y, z) = (2x − y + z, x − z). On prend pour B la base canonique de R3 et pour C la
base canonique de R2.

2. ∆ :K3[X ] −→K2[X ] l’application dérivée.
On prend pour B la base canonique de K3[X ] et pour C la base canonique de K2[X ].

Proposition 10 (Correspondance biunivoque entre matrice et application linéaire).
Soit E de dimension finie p , muni d’une base B et F de dimension finie n muni d’une base C . Ces bases étant fixées.

Alors pour toute matrice A ∈Mn,p (K) il existe une et une unique application linéaire f de E dans F telle que

A = MatC ,C ( f )

Démonstration :

O
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III.1.b Liens entre les opérations sur les matrices et les opérations sur les applications linéaires

Proposition 11 (Somme de matrice et applications linéaires).
Soit f , g ∈L (E ,F ) deux applications linéaires B une base de E et C une base de F .
On note A = MatC ,B( f ) et B = MatC ,B(g ) leurs matrices associés et λ ∈K alors :✒

• A+B = MatC ,B( f + g ).

• λ.A = MatC ,B(λ f ).

Attention : Il faut prendre la même base de départ et la même base d’arrivée pour représenter f et g .e
Exercice 4.
Soit f l’application linéaire définie par f (x, y) = (x + y, x − y), écrire la matrice de f + idR2 et 2 f dans la base cannonique.

Proposition 12 (Rappel : composition d’applications linéaires).
Soient f : E −→ F , g : F −→G des applications linéaires entres les espaces vectoriels E, F et G.
Alors g ◦ f est une application linéaire .✒

Théorème 6 (Composition et produit de matrices).
Soient f : E −→ F , g : F −→G des applications linéaires et B, C et D des bases respectives des espaces vectoriels de dimen-
sion finie E, F et G.
Si A = MatC ,B( f ) et B = MatD ,C (g ) alors

MatD ,C (g )MatC ,B( f ) = MatD ,B(g ◦ f ).

Attention : Il faut bien faire attention aux bases utilisées pour écrire les matrices.e
Proposition 13 (Matrice d’une application linéaire bijective).
Soient E et F deux espaces vectoriels de dimension finie et f une application linéaire de E dans F .
Soit B une base de E et C une base de F . La matrice de f est notée

A = MatC ,B( f ).

Alors
A est inversible si et seulement si f est bijective.
Dans ce cas là

A−1 = MatB,C ( f −1).

Attention : Il faut bien faire attention que lorsque l’on passe de la matrice de f à celle de f −1 les bases de départ ete
d’arrivée sont inversées.
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III.2 Liens entre les propriétés des applications linéaires et celle des matrices les représentant

Définition 6.
Noyau et image d’une matrice Soit A ∈Mn,p (K), on note

ϕA : Mp,1(K) → Mn,1(K)

X 7→ AX

C’est l’application linéaire canoniquement associée à A.
Par définition

Ker A = Ker ϕA Im A = Im f A✒
C’est à dire

Ker A = {
X ∈Mp,1(K)

/
AX = 0

}
Im A = {

Y ∈ Mn,1(K)
/

il existe X ∈Mp,1(K) tel que AX = Y
}

✒
Proposition 14 (Structure de sous-espace vectoriel ).
Ker A es un sous-espace vectoriel de Mp,1(K) et Im A est un sous-espace vecto-
riel de Mn,1(K) .

Exemple : Soit f la fonctionK2[X ] dans lui même telle que f (P ) = X P ′. Utilisons la matrice dans la base canonique pour
calculer l’image et le noyau.

Remarque : La notion de rang d’une matrice M vu l’année dernière correspond à la dimension de Im M .

Proposition 15 (Rang d’une application/ matrice).
Soit f ∈L (E ,F ) et M la matrice représentant f dans des bases quelconques alors

rg ( f ) = rg (M)
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III.3 Changement de base

III.3.a Rappel : pour un vecteur

On reprend les notations de la partie représentation matricielle" du chapitre précédent.

Matrice de passage et calcul des coordonnées d’un vecteur.

Soient B = (e1,e2, . . . ,en), B′ = (f1, . . . , fn) deux bases d’un espace vectoriel E et v un vecteur de E .
On appelle matrice de passage :

f1 . . . . . . fn

P =

 ∗


e1
...

en

la matrice PB,B′ dont la j ème colonne est formée du vecteur colonne des coordonnées fj exprimées
dans la base B,
Cette matrice PB,B permet de calculer les coordonnées dans B en fonction des coordonnées dans
B′ :
Si on note X la matrice des coordonnées d’un vecteur u dans B et X ′ celle dans B′ alors

X = P X ′

Remarque : On remarque que c’est la matrice de l’application identité de E avec comme base de départ B′ et comme
base d’arrivée B

III.3.b Pour un endomorphisme

Théorème 7 (Formule du changement de base pour une application linéaire de E dans E ).
Soient f : E −→ E une application linéaire, B « l’ancienne » base de E et B′ sa « nouvelle » base,

MatB′,B′ ( f ) = MatB′,B(idE )MatB,B( f )MatB,B′ (idE ). (E.1)

où idE désigne l’application identité.

Si on note A = MatB,B( f ), A′ = MatB′,B′ (g ), alors

• La matrice P = MatB,B′ (idE ) est la matrice de passage qui permet de calculer les coordonnées dans la base
B à partir des coordonnées dans la base B′.

• La matrice P est inversible , son inverse est P−1 = MatB′,B(idE ).

• L’égalité (E.1) peut s’écrire sous la forme
A′ = P−1 AP.
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Formule du changement de base La formule à retenir

En reprenant les notations précédentes

MatB′ ( f ) = P−1
B,B′ MatB( f )PB,B′

Ce qui justifie le nom de la matrice PB,B′ qui permet de passer de la matrice de f dans B à celle
dans B′.

E E

x y = f (x)

coordonnées
de x dans B′ X ′ =


x′

1
...

x′
n

 Y ′ = A′X ′ =


y ′1
...

y ′n

 coordonnées
de y dans B′

coordonnées
de x dans B

X =


x1
...

xn

 Y = AX =


y1
...

yn

 coordonnées
de y dans B

f

Multi. par P Multi. par P−1

Multi. par A′

Multi. par A

Pour résumer :

Y ′︸︷︷︸
coordonnées de f (x) dans B′

= P−1

coordonnées de f (x) dans B︷ ︸︸ ︷
A P X ′︸︷︷︸

coordonnées de x dans B′︸ ︷︷ ︸
coordonnées de x dans B︸ ︷︷ ︸

coordonnées de f (x) dans B′

Définition 7 (Matrices semblables).
Soit A et B deux matrices de Mn (K) (donc carrées) on dit que A et B sont semblables si et seulement si il existe une matrice
P inversible telle que

B = P−1 AP

Remarque : Lorsque A et B sont les matrices de deux endomorphismes dans deux bases alors ces matrices sont sem-
blables.
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