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Dans tout ce cours K désigne R ou C. E, F désignent des espaces-vectoriels sur K.

I Applications linéaires

I.1 Définitions

Définition 1 (Application linéaire).
Soit E et F deux espaces vectoriels et f une application de E vers F.
Alors on dit que [ est une application linéaire si et seulement si

YueE,VveE, VAeR, VueK fA-u+p-v)=

Notations
On dit aussi que f est un (homo)morphisme d’espace vectoriel.
L'ensemble des applications linéaires de E vers F est noté .Z (E, F).

Exemple :
* Lafonction définie sur K2 par s(x, y) = (x + , X — y) est une application linéaire.
* Lapplication
p: R - R
x,,2) — (x+yx+z,z+y)
est une application linéaire.
* La dérivation dans K[X] :
A: K[X] — KI[X] estune application linéaire.
P — P
¢ Soit I un intervalle de R
®: E°I) — E°°) estune application linéaire.
p = ¢
« Lapplication ¢ de K? dans lui méme définie par ¢(x, y) — (x2, —y) n'est pas linéaire.

¢ La transposition de matrice est une application linéaire de .4, (K) dans lui méme.

Proposition 1 (Autres caractérisations de la linéarité).
Soit f une application d’un espace-vectoriel E dans un espace-vectoriel F. Les trois propriétés suivantes sont équivalentes :

1. f estlinéaire

2. (un seul scalaire)
VYue E,VveE, VA eK fAu+v) =
3. (+et.traités séparément )

VYue E,VveE,VAeK  f(u+v)= et  f(lu) =



Proposition 2 (Premieres propriétés).
Soit E et F deux espaces vectoriels alors :

e feZ(EF)alors f(Og) =
e Sife X (EF) etsiuy,uy..., uy sont des vecteurs et A1,...,A, sont des scalaires :

Définition 2 (Applications linéaires particulieres).

* Un endomorphisme est une application linéaire de E dans lui méme.
Lensemble des endomorphismes de E est noté £ (E)

* Unisomorphisme est une application linéaire bijective.
¢ Un automorphisme de E est un endomorphisme bijectif de E. L'ensemble des automorphismes de E est est noté
GL(E).

Définition 3 (Composées itérées d'un endomorphisme).
Soit f € £ (E) et n un entier naturel . On note

idg sin=0

fofof-—-of sinon
—_——

n fois

=

On a de fagon équivalente

e idg sin=0

fof™ 1 sinon



Si on vous demande de prouver qu'une application f : E— F estlinéaire et sil’on sait déja que E et
F sont des espaces vectoriels.
1. 1l faut commencer par bien choisir les variables utilisées.
Par exemple si on manipule des polynémes, on choisira comme vecteurs P et Q. Si on manipule
des vecteurs de K2, u = (x,) et v= (x,). Dans K3, u = (x,,2) et v= (x',y',2)). Si I'énoncé
propose des notations, on essaye de les respecter.

2. On vérifie 'une des deux caractérisations de la proposition 1.

3. On commence par écrire,en remplagant V et [J par les bonnes notations : « Soit V dans ... et J
dans... et A un réel ou un complexe

fa0+0 on calcule AL1+V

= on utilise la définition de f donnée dans I'énoncé

= on fait des simplifications

=AfO+ f(V) sans tricher! et en utilisant la définition de f

Si on vous demande de prouver qu'une application i’ est pas linéaire.
1. On commence par calculer f(0g), en utilisant bien le vecteur nul de I'espace vectoriel de dé-
part. Sion a dela chance on constate que f(0g) # O et on peut conclure que f n’est pas linéaire.

2. Si f(0g) = OF il faut continuer et chercher un contre-exemple a la linéarité

* Soit trouver un scalaire A et un vecteur [J tels que f(AL)) # A f(0J). On cherche souvent
des contre-exemples simples, on commence par essayer avec A = —1,

¢ Soit trouver deux vecteurs [ et V tels que f(J+V) # f () + f(V). On cherche souvent des
contre-exemples simples.

Une fois le contre-exemple trouvé (il peut déja étre donné indirectement dans les questions
précédentes!) on peut conclure que f n’est pas linéaire.

.2 Structurede ¥ (E) et ¥ (E,F)

Proposition 3 (Combinaison linéaire d’applications linéaires).
Soit E et F deux K -espaces vectoriels , alors

% (E, F) est unlK -espace vectoriel .

Démonstration :



Proposition 4 (Composition).
Soit E, F et G trois K espaces-vectoriels.

Soit f une application linéaire de E vers F et g une application linéaire de F vers G, alors : o

est une appli-
cation linéaire de vers

Démonstration :

Proposition 5 (Bijection réciproque).
Soit f un isomorphisme de E dans F, alors f ! est une application linéaire de F dans E.

Démonstration :

I.3 Noyaux et images

Définition 4 (Noyau et image).
Soit f € £ (E, F).



* On appelle noyau de f et on noteKer (f), 'ensemble défini par
Ker (f) ={ve E/ f(v) = Og}

( Ker pour kern ou kernel)

* On appelle image de f et on notelm f, 'ensemble défini par

Im f={weF/ IveE,fv)=w}={f(¥) oit vparcourt E}.

Si on sait que ¢ est une application linéaire d'un espace vectoriel E dan un autre espace vectoriel.
¢ On commence par bien choisir les bonnes notations.

* Le début de la rédaction commence obligatoirement par «Soit [ € E, [] € Ker ¢ si et seule-
ment si @) =0»

* Onremplace alors ¢ par la définition donnée dans 1'énoncé

¢ On raisonne avec des si et seulement si ou des < en résolvant I'équation apparue au point
précédent jusqu’a obtenir la forme la plus simple possible.

Proposition 6 (structure du noyau et de I'image).
Soit f : E — F uneapplication linéaire, alorsKer (f) est un sous-espace vectoriel de
etIm f est un sous-espace vectoriel de

Démonstration :

Exemple :
¢ Lensemble des applications définies et dérivables sur un intervalle I qui vérifient
vxel flx)+x-f(x)=0
est le noyau de
A €l - €'
= a=xf@+f(x)



1. Si F est donné directement sous la forme d’'un noyau F = Ker ¢ et que 'on a montré précé-
demment que ¢ vous pouvez conclure par « F étant le noyau d'une application linéaire, c’est
un sous-espace vectoriel de E donc un espace vectoriel ».

2. Si F est donné par une écriture de la forme F = {{J€/--- = 0} on peut prendre 'initiative d’es-
sayer de trouver une application linéaire ¢ telle que F = Ker ¢

Exercice 1.
Calculer les noyaux et les images des applications suivantes

f: R - R=3[X] f: R - R

x, 20 — ((xX+y,x+2z0) (x,y,2) — x+y-z

Proposition 7 (Lien entre noyau et injectivité, Image et surjectivité).
Soit f € £ (E,F)
f estinjective si et seulement si Ker (f) = {0g}.

f est surjective si et seulement si Im (f) = F.

Démonstration :

II Dimension finie

Dans cette partie sauf indication contraire, les espaces vectoriels sont de dimension finie.

II.1 Image d’'une base

Théoréme 1 (Famille génératrice de 'image).
Soit f € £ (E, F) avec E de dimension finie. Soit (e1, ez, ...,ep) une base de E. Alors

Im f = Vect(f(e1), f(e2), ..., f(ep))

Limage d’'une base par une application linéaire est une famille génératrice de l'image.



Démonstration :

Exemple: CalculonsIm fou f : R3[X] — R3[X]
p — PX+1D)-PX-1

Proposition 8.
Soit f un isomorphisme de E vers F o E est un espace vectoriel de dimension finie, alors F est aussi de dimension finie et
Dim F =Dim E.

Théoréme 2 (Détermination d’'une application linéaire par 'image d’'une base).
Soir E de dimension finie. Soit (e1, €z, ...,ep) une base de E. Soit (fy 12, ...,fp) une famille de F. Il existe une et une seule
application linéaire f € £ (E, F) telle que

ViE[[l, n]] flep =1£

Démonstration :

Exemple : Quel est I'unique endomorphisme de K, [X] tel que f(1) =0, f(X) =2et f(X?) = X?



Théoréme 3 (K").
Si E est un espace vectoriel de dimension n alors il existe un isomorphisme de E vers K". On dit alors que E et K" sont
isomorphes.

Démonstration :

II.2 Rang d’une application linéaire

Définition 5 (Rang d'une application linéaire).
On appelle rang d’'une application linéaire f et on noterg (f) la dimension de l'image de f.

1g (f) =Dim Im f

Théoréme 4 (Le théoréme du rang).
Soit f : E — F une application linéaire oi1 E est un espace vectoriel de dimension finie.
On a alors :

dim(Im f)+dim(Ker f)=dim(E).

Exemple :
Soit I'application linéaire f : R3 — R3 définie par f(x,y,2) = (y — z,—x + 2z, x — y), alors Ker f = Vect((1,1,1)) donc
dim(Im f) =2.

Théoréme 5 (Injectivité et surjectivité).
Soit f E — F une application linéaire, ot E et F sont des espaces vectoriels de méme dimension finie.
Alors les trois propriétés suivantes sont équivalentes

1. f estinjective.
2. f estsurjective.

3. f est bijective.



Si f est un endomorphisme d’un espace vectoriel de dimension finie E et si on doit montrer que f
est un automorphisme (i.e. bijective). Il suffit :
¢ De vérifier que f est injective (par exemple en étudiant Ker f) et de rappeler que E est de
dimension finie.

¢ Ou bien De vérifier que f est surjective (par exemple en étudiant Im f) et de rappeler que E
est de dimension finie.
III Matrice

III.1 Matrice d’'une application linéaire

Ill.1.a Définition

Soient E et F deux espaces vectoriels de dimension finie, f : E — F une application linéaire, % = (ey,.

basede E et ' = (f1,...,fn) une base de F.
Pour tout vecteur v=x -ey + -+ xp - €p (les x; sont les coordonnées de v dans la base %), ona:

fw=

ot les y; sont les coordonnées de f(v) dans la base %’.
Si on écrit les coordonnées des vecteurs en colonnes, cette égalité s’écrit :

Yn

..,ep) une

Les coordonnées des vecteurs f(e;) suffisent donc a calculer I'image f(v) de tout vecteurs v dont on connait les

coordonnées dans la base % :

10



Proposition 9 (Ecriture matricielle d’'une application linéaire).

Soient E, F deux espaces vectoriels de dimension finie, 8 = (e1,--- ,ep) une base de E, ' = (f1,--- ,fn) une base de
F et f: E — F une application linéaire.

Si on note

* X la matrice colonne des coordonnées du vecteurv dans la base 8
* Y la matrice colonne des coordonnées de l'image f (v) dans la base B,

alors on a la relation :

flep)...f(ep)

N
) f X1
fn Xp
Yn
—~— —— —~—
Y = A X

o la matrice a n lignes et p colonnes A= (Ay,---, Ap) est la matrice oii les colonnes A sont les coordonnées dans
la base %' des vecteurs f (e5)).
La matrice A sappelle la matrice de Vapplication linéaire f de la base 2 vers la base %', on la note

A= Matggrygg(f).

Ce que l'on peut représenter de la maniere suivante

E / F
x| =fx
' calcul direct y=7®
calcul des coordonnées de calcul de y a I'aide des co-
x dans la base # ordonnées dans la base ¢
X=Xx1-€e1++Xp-€p y=y-fi++yn-fa
1 multiplication par A n
X=|: | Y=AX=
Xp Yn
My 1K M1 (K
p,1 (K) X — AX n,1 (K)

11




fler)...f(ep)

fn

Remarque:

Si % = %', on note Mat z(f) au lieu de Mat gz (f) et on dit matrice de f dans la base Z.
Attention : Cette notation apparait dans le programme contrairement a Matgg 4 (f), aucune notation n’est donnée pour
le cas général. Dans les problémes, on introduit dans la majorité des cas la matrice avec une phrase et la notation n’est
pas utilisée.

Exercice 2.
Soitidg : E — E I'application identité et %8 une base de E montrer que Mat g (idg) = I o1 I désigne la matrice identité.

Attention : il faut que la base de départ et la base d’arrivée soient les mémes!

Exercice 3.
Calculer les matrices des applications linéaires suivantes

1. Soit f: R3 — R2 définie par f(x,5,2) = (2x—y+z,x—2z). On prend pour # la base canonique de R3 et pour % la
base canonique de R2.

2. A:K3[X] — K2[X] I'application dérivée.
On prend pour £ la base canonique de K3[X] et pour % la base canonique de K2 [X].

Proposition 10 (Correspondance biunivoque entre matrice et application linéaire).
Soit E de dimension finie p , muni d'une base % et F de dimension finie n muni d'une base € . Ces bases étant fixées.
Alors pour toute matrice A € Mn,p(K) il existe une et une unique application linéaire f de E dans F telle que

A= Mat€,%(f)

Démonstration :

12



III.1.b Liens entre les opérations sur les matrices et les opérations sur les applications linéaires

Proposition 11 (Somme de matrice et applications linéaires).
Soit f, g € £ (E, F) deux applications linéaires # une base de E et € une base de F.
On note A= Maty 5(f) et B= Maiy 5(8) leurs matrices associés et A € K alors :

* A+ B=Maty 5( ).
. ZMatcg,__@(ﬂ,f).

Attention : Il faut prendre la méme base de départ et la méme base d’arrivée pour représenter f et g.

Exercice 4.
Soit f I'application linéaire définie par f(x, y) = (x+ y, x — y), écrire la matrice de f +idp et 2 f dans la base cannonique.

Proposition 12 (Rappel : composition d’applications linéaires).
Soient f : E — F, g: F — G des applications linéaires entres les espaces vectoriels E, F et G.
Alors go f est une

Théoreéme 6 (Composition et produit de matrices).

Soient f : E— F, g: F — G des applications linéaires et 74, ¢ et 7 des bases respectives des espaces vectoriels de dimen-
sion finieE, F et G.

Si A= Maty »(f) et B=Matg 4 (g) alors

Matg o (8) Maty 5 (f) = Matg (g f).

Attention : Il faut bien faire attention aux bases utilisées pour écrire les matrices.

Proposition 13 (Matrice d'une application linéaire bijective).
Soient E et F deux espaces vectoriels de dimension finie et f une application linéaire de E dans F.
Soit % une base de E et ¢ une base de F. La matrice de f est notée

A= Maty z(f).

Alors
A est inversible si et seulement si f est bijective.
Dans ce cas la
A7 =Mat oy o (f7H.

Attention : 1l faut bien faire attention que lorsque 1'on passe de la matrice de f a celle de f~! les bases de départ et
d’arrivée sont inversées.

13



III.2 Liens entre les propriétés des applications linéaires et celle des matrices les représentant

Définition 6.
Noyau et image d’'une matrice Soit A € Mn,p(K), on note

-/%p,l(ﬂ’@
X

YA

C'est application linéaire canoniquement associée a A.
Par définition
Ker A=Ker ¢y
Cest a dire
Ker A={Xe.p1K)/
ImA={Ye

Proposition 14 (Structure de sous-espace vectoriel ).
Ker A es un sous-espace vectoriel de
riel de

Jﬂn,l (K)
AX

Im A=Im f4

/ il existe X € M), (K) tel que

etIm A est un sous-espace vecto-

Exemple : Soit f la fonction K2 [X] dans lui méme telle que f(P) = XP’. Utilisons la matrice dans la base canonique pour

calculer I'image et le noyau.

Remarque : La notion de rang d'une matrice M vul’année derniere correspond a la dimension de Im M.

Proposition 15 (Rang d’'une application/ matrice).

Soit f € £ (E, F) et M la matrice représentant f dans des bases quelconques alors

rg (f) =rg (M)

14



III.3 Changement de base
I1I.3.a Rappel: pour un vecteur

On reprend les notations de la partie représentation matricielle" du chapitre précédent.

Soient # = (ey,ey,...,en), ' = (f1,...,fn) deux bases d’'un espace vectoriel E et v un vecteur de E.
On appelle matrice de passage :

€1

€n

la matrice Py gz dontla j éme ¢olonne est formée du vecteur colonne des coordonnées fj exprimées
dans la base %,

Cette matrice P 4 permet de calculer les coordonnées dans % en fonction des coordonnées dans
%/ . ’
Si on note X la matrice des coordonnées d’un vecteur u dans % et X' celle dans %’ alors

X=prX'

Remarque : On remarque que cest la matrice de I'application identité de E avec comme base de départ %’ et comme
base d’arrivée %4

I11.3.b Pour un endomorphisme

Théoréme 7 (Formule du changement de base pour une application linéaire de E dans E ).
Soient f : E — E une application linéaire, 7 « lancienne» base de E et %' sa « nouvelle» base,
Mali},jgr’%r (= Matjgr”%(idE) Mat%% N Matjgﬁ@r (idg). (E.1)

ou idp désigne l'application identité.

Sion note A= Matgp g(f), A’ = Maty ' g (g), alors

* Lamatrice P = Matg g (idg) est la matrice de passage qui permet de calculer les coordonnées dans la base
B a partir des coordonnées dans la base B'.

* La matrice P est inversible, son inverse est P~ = Matgg o(idE).

o L'égalité (E.1) peut s'écrire sous la forme
A'=plap

15



En reprenant les notations précédentes

Matgg (f) = Py ;5 Matg (/)P g, g

Ce qui justifie le nom de la matrice Pgg g qui permet de passer de la matrice de f dans & a celle

dans #'.

f
E E
x y=rf&x

X 1 "
coordonnées =l Multi. par A Vo AlX = coordonnées
de x dans %’ : dey dans %'

Xn Yn

Multi. par P Multi. par P!

X1 n i
coordonnées X = Y= AX = coordonnées
de x dans A Multi. par A de ydans #

Xn Yn

Pour résumer :
coordonnées de f(x) dans #
Y’ =plap X'
— —~

coordonnées de f(x) dans %’ coordonnées de x dans A’

coordonnées de x dans #

coordonnées de f(x) dans %’

Définition 7 (Matrices semblables).
Soit A et B deux matrices de 4y, (K) (donc carrées) on dit que A et B sont semblables si et seulement si il existe une matrice
P inversible telle que

B=pP AP

Remarque : Lorsque A et B sont les matrices de deux endomorphismes dans deux bases alors ces matrices sont sem-
blables.
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