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Calculs

Exercice 1.

En calculant des primitives déterminer si les intégrales suivantes convergent et si oui donner
leurs valeurs.
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Exercice 2 (Intégrales classiques, A SAVOIR FAIRE).
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¢ Intégrales de Riemann. Soit @ € R montrer que l'intégrale f e converge si et seule-
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¢ Intégrales de Riemann. Soit a € R montrer que I'intégrale a converge si et seulement
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* Exponentielles.
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Exercice 3.

En utilisant des changement de variables ou des IPP déterminer si les intégrales suivantes convergent
et si oui donner leurs valeurs.
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Exercice 4 (Fraction rationnelle).

1. Trouver deux constantes a et b telles que pour tout x € R\ {0, 1}
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2. Pour chacune des intégrales suivantes dire si elle converge ou non, dans le cas convergent,
donner la valeur de I'intégrale.
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Exercice 5 (Bien choisir le découpage).
Prouver la convergence des intégrales suivantes et calculer leur valeur.
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Théorémes de comparaisons

Exercice 6.
Les intégrales suivantes sont elles convergentes? On pourra utiliser les résultats de I'exercice 2
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Exercice 7.
Les intégrales suivantes sont elles convergentes?
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Exercice 8 (Plus dur).
Etudier la nature des intégrales suivantes
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Exercice 9.
Les intégrales suivantes sont elles convergentes?
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Exercice 10.
Pour chacune des intégrales suivantes étudier si elle converge ou non.
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Mélangés

Exercice 11 (Calculs).
Calculer, si elles convergent les intégrales suivantes
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Exercice 12 (Fractions rationnelle). 1. Trouver a b et c tels que pour tout x € R
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2. Soit a > 0, En déduire la valeur de f; _
x(1+x2)

3. En utilisant des équivalents calculer
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Exercice 13 (4 Une récurrence).
Pour n € N, on pose sil'intégrale converge
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1. Calculer Iy.
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2. Montrer que lim;— 400 % (tvr)=0.

3. En déduire qu'il existe un réel A tel que
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4. En déduire que les intégrales sont convergentes.

5. ATl’aide d’'une intégration par partie, montrer que pour 7 € N
Iny1=+1DIy

6. En déduire une expression de I, en fonction de n.

7. Trouver la limite de Ij; quand n tend vers +oco.

Exercice 14 (Autour de l'intégrale gaussienne).
En utilisant la valeur de I'inégrale Gaussienne, des changement de variable et des IPP, et des
remarques de parité calculer
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Exercice 15.
On cherche a déterminer si I'intégrale suivante converge

+00 dx
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1. Trouver un équivalent simple de la fonction en +oo.
2. En déduire que l'intégrale converge.

3. Trouver trois constantes a, b et c telles que pour tout x € R4

1 a N b L€
1+02+x)@B+x) x+1 x+2 x+3

4. En déduire la valeur de I'intégrale

Exercice 16 (4 Changement de variable). 1. Montrer que pour € [0; +ool, Int < v/7

2. En déduire que J;° llj_l—ttz dr converge.

3. En utilisant le changement de variables u = 1/ ¢, montrer que fol llf—ttz dt converge et don-
ner sa valeur en fonction de l'intégrale précédente.

4. Montrer que fg ™ 1141: :2 dt=0.

5. Soit a > 0. Calculer f;® u;rj_ttz dr.

Pour aller plus loin

Exercice 17.
Etudier la convergence des intégrales suivantes
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Exercice 18 (Intégrales a parametres (dur et long)). En déduire que
Etudiez la convergence des intégrales suivantes en fonction du ou des paramétres : f +00 gl _o=bt dt=1In b
+oo MM 0 t a
1. f dx o meR
1 x2+1 Exercice 21.
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! 1. Démontrer la convergence de I'intégrale fo Py dx. On pourra comparer avec xi“ pour

Exercice 19 (Un calcul un peu compliqué mais détaillé). « bien choisi

On pose
o1 2. Donner un équivalent simple au voisinage de 0 de
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f=1 3. En déduire la convergence def0 BV — dx.
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1 +00 In (x + /%) —In(x)
2. [ f(¥)dt est elle convergente? ture de fl - @3 dx.
0
. ) X rdr Z du Exercice 22 (Logarithme a la puissance n).
3. Soit x €]0; 1[. En posant u = t“, montrer quef n :f na
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, Apres en avoir justifié I'existence, calculer par récurrence la valeur de I, = f (Inx)" dx.
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6. En déduire que
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8. En utilisant le théoréme des gendarmes montrer que
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Exercice 20.
Soient0<a<b.
—at_,—bt
1. Justifier la convergence de [ ™ &—¢— dz.

2. Soient 0 < x < y. Démontrer que
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