
Lycée Champollion, Grenoble 2025-2026
T.P. Informatique BCPST Spé

SIMULATIONS D’EXPÉRIENCES ALÉATOIRES DISCRÈTES

Les parties marquées d’un�, ne doivent être abordées que si vous avez de l’avance.

Objectifs, motivations et premier pas

Dans ce TP nous allons créer des fonctions permettant de simuler les principales lois
usuelles discrètes au programme et hors programme. Nous allons aussi utiliser des repré-
sentations graphiques pour visualiser les distributions des lois simulées.

Il faut bien distinguer

• Simuler une variable aléatoire ou une expérience aléatoire. On écrit une fonction py-
thon qui donne un résultat aléatoire qui correspond à l’expérience décrite. À chaque
fois que nous utiliserons cette fonction le résultat obtenu peut être différent, mais
les fréquences d’obtention de chaque résultat doivent s’approcher de la probabilité
théorique.

• Calculer la loi d’une variable aléatoire, ce qui a été fait en cours de mathématiques.

Remarque : La plupart des fonctions que nous allons écrire existent déjà dans différents
modules notamment numpy, numpy.random 1. Quand cela est possible le corrigé indique la
fonction numpy qui effectue la tache demandée.

Nous proposons ici des versions naïves qui ne correspondent pas toujours à celles utili-
sées en pratique mais utilisent les schémas classiques.

À programmer 1 (Préambule).
Télécharger le fichier Simulation.py. Le compléter en important les modules :

1. numpy avec l’alias np

2. numpy.random avec l’alias rd

3. matplotlib.pyplot avec l’alias plt

La maîtrise du module de tracé de graphe n’est pas un attendu du programme et il peut
être compliqué sans entraînement d’obtenir des graphiques exploitables, c’est pourquoi on
vous donne une fonction Graphe, qui prend en argument un objet de type tableau et qui
affiche un graphe représentant les fréquences.

À programmer 2 (Test de la fonction Graphe).
Recopier la ligne suivante :

Graphe([0,1,2,1,2,1,0])

1. ou pour les distributions les plus récentes numpy.random.Generator

I Première simulation, et fonctions utiles

Consigne Dans la suite le seul générateur aléatoire que nous allons utiliser est la fonc-
tion :

numpy.random.random()

qui renvoie un réel choisi de façon uniforme dans l’intervalle [0; 1[.

À programmer 3 (Bernoulli).
Écrire une fonction Ber(p) qui, pour une valeur réelle p ∈]0; 1[, renvoie une simula-
tion d’une variable aléatoire suivant la loi B(p) ; les valeurs renvoyées doivent être 0
ou 1.

Pour tester nos générateurs aléatoires, nous allons effectuer un grand nombre d’expé-
riences pour estimer les fréquences et calculer la moyenne et l’écart-type. . .. Nous allons
en profiter pour manipuler des tableaux numpy np.array, ce qui servira de rappel sur ce
module.

Rappels numpy

• Pour créer un tableau, on utilise par exemple np.array([1,2,0,3.5])

• On obtient la taille d’une matrice M à n lignes et p colonnes grâce à n,p=M.shape ;
pour un tableau unidimensionnel T de taille n on peut écrire n=len(T).

• Pour accéder à l’élément d’indice i d’un tableau T : T[i].

• On ne peut pas utiliser la méthode append sur ce type d’objet, la taille du tableau est
fixée à la création.

• Pour créer un grand tableau, on peut partir d’un tableau de la bonne taille rempli de 0
avec la commandes numpy.zeros, puis modifier les éléments à l’aide d’une boucle :
par exemple

1 T=np.zeros(10)
2 for i in range(10):
3 T[i]=i

• On peut effectuer des opérations sur le tableau élément par élément 2 sans utiliser de
boucle, par exemple : T**2 (resp. T+1) renvoie un nouveau tableau dont les éléments
sont les carrés de ceux de T (resp. ceux de T augmentés de 1)

• On peut obtenir facilement la somme des valeurs de T avec S = T.sum(). On peut
aussi obtenir la moyenne et l’écart-type des valeurs, les noms des méthodes sont ceux
utilisés en anglais.

À programmer 4 (Test).
Tester rapidement les commandes précédentes.

2. elementwise ou pointwise ou pointed operator

1

Nous commençons par créer une fonction générale qui permet de répéter un grand
nombre de fois une simulation et qui renvoie un tableau des valeurs obtenues.
Par exemple Repetition(100,Ber,0.5) va retourner une série de 100 simulations d’une
variable aléatoire suivant une loi de Bernoulli équilibrée. Comme il faut pouvoir passer des
arguments à la fonction et que la syntaxe est compliquée, on vous fournit un début de ré-
ponse.

À programmer 5 (Complétion).
Décommenter la fonction Repetition et la compléter.

À programmer 6 (Test).
Utiliser les fonctions Repetition et Graphe pour simuler un grand nombre de résul-
tats suivant une loi de Bernoulli. Choisir les paramètres pour obtenir un graphe très
proche de

À programmer 7 (Fonctions Moyenne et EcartType).
Écrire une fonction Moyenne(L) et une fonction EcartType(L) qui renvoient res-
pectivement la moyenne est l’écart-type de la série de valeurs représentées par le ta-
bleau L.

II Les lois classiques

À programmer 8 (Loi binomiale).
En utilisant le modèle classique de la loi binomiale, écrire une fonctionBinomiale(n,p)
qui simule le résultat d’une variable aléatoire suivant la loi B(n, p).

À programmer 9 (Test).
En utilisant les fonctions Repetition et Graphe, tester votre fonction. Bien choisir
les paramètres pour obtenir des graphes proches des graphes suivants :

À programmer 10 (Estimation des paramètres).
En utilisant les fonctions Moyenne et EcartType, vérifier que l’on obtient des résul-
tats cohérents avec les résultats du cours.

À programmer 11 (Loi Géométrique).
En utilisant le modèle classique de la loi géométrique, écrire une fonctionGeometrique(p)
qui simule le résultat d’une variable aléatoire suivant la loi G (p).

Remarque : Dans le cas où p est très petit, la boucle while peut se répéter un grand nombre
de fois. nous verrons par la suite comment simuler cette loi autrement.

À programmer 12 (Test).
En utilisant les fonctions Repetition et Graphe, tester votre fonction. Bien choisir le
paramètre pour obtenir les graphes suivants :

À programmer 13 (Estimation des paramètres).
En utilisant les fonctions Moyenne et EcartType, vérifier que l’on obtient des résul-
tats cohérents avec les résultats du cours.

Loi de Poisson Pour simuler une loi de Poisson, qui n’est pas décrite par un schéma simple,
il existe plusieurs procédés. Nous en proposons une qui anticipe un peu sur le programme
du second semestre

2

Sur papier 1 (Calcul d’une Limite).
Soit λ > 0, et n ∈ N∗ on suppose que Xn est une variable aléatoire qui suit la loi

B(n,
λ

n
)

1. Soit n ∈ J0, nK, rappeler la valeur de P (Xn = k).

2. calculer lim
n→+∞

(
1− λ

n

)n−k

3. Montrer que

(
n

k

)
∼

n→+∞
nk

k !

4. Montrer que lim
n→+∞P (Xn = k) = λk

k !
e−λ

On dira que Xn tend en loi vers une variable aléatoire suivant la loi P (λ)

À programmer 14.
Pour simuler une variable aléatoire suivant la loi P (λ), on la remplace par une loi

B(n,
λ

n
) avec n "grand". En pratique si λ < 15 on doit choisir n plus grand que 30 et

tel que
λ

n
< 0.1

Écrire une fonction Poisson(lam) qui simule le résultat d’une variable aléatoire
suivant la loi P (λ). On commencera par calculer un n qui convient et on utilisera la
simulation de Binomiale implémenter précédemment.

À programmer 15 (Test).
En utilisant les fonctions Repetition et Graphe, tester votre fonction. Le faire pour
plusieurs paramètre et décrire l’influence de ce paramètre sur l’allure du graphique.

II.1 Reconnaître une loi

À programmer 16 (Reconnaissance de loi).
Le fichier fourni comporte deux séries de données Mystere1 et Mystere2. Ces séries
ont été générées en utilisant l’un des générateurs aléatoires précédents. Le but est
de proposer une loi qui permette d’obtenir ce type de série. Pour chacune des deux
séries :

• Tracer le graphe de la distribution, et proposer une loi.

• Estimer les paramètres de cette loi ; on pourra utiliser les fonction Moyenne et
EcartType.

III Simuler une loi (finie) quelconque

III.1 Le principe

On se donne une variable aléatoire X dont le support est J0, nK, et telle que

∀i ∈ J0, nK , P (X = i) = pi

On représente les probabilités par un tableau P tel que P [i] = pi .

Attention : On suppose de plus dans la suite que toutes les probabilités pi sont strictement positives.e
À programmer 17 (Validité).
Écrire une fonction TestValide(P) qui renvoie True si P représente bien une pro-
babilité de ce type, False sinon.

On note R la fonction de répartition de X , c’est une fonction à valeurs dans [0; 1[, crois-
sante, qui vérifie

R(0) < R(1) < ·· · < R(n)

On choisit un nombre réel U au hasard 3 dans [0; 1[, il existe alors un unique indice i tel que

R(i −1) <U ⩽R(i)

(ou si i = 0, U ⩽R(0))

Pour une loi uniforme sur [0; 1[, P (X ∈ I) = "longueur de l’intervalle I"

"longueur de l’intervalle[0; 1["
.

Donc la probabilité P (R(i−1) <U ⩽R(i)) est égale à la longueur de l’intervalle]R(i −1); R(i)]
que divise 1 ; c’est à dire

P (R(i −1)⩽U < R(i)) = R(i)−R(i −1) = P (X = i)

Algorithme Pour simuler la variable aléatoire X

• Choisir un nombre réel u au hasard entre 0 et 1

• Trouver l’entier i qui vérifie R[i −1] < u ⩽ R[i] ; on remarque que c’est le plus petit
entier i tel que R[i]⩾ u

III.2 Implémentations

À programmer 18 (Répartition).
Écrire une fonction Repartition(P) qui pour un tableau P, de longueur n+1, repré-
sentant une loi d’une variable aléatoire, renvoie le tableau de même longueur repré-
sentant la fonction de répartition.

∀i ∈ J0, nK R[i] = P (X ⩽ i)

À programmer 19 (Simulation).
Écrire une fonction Simulation(R) qui prend en paramètre un tableau représentant
une fonction de répartition, choisit un réel u au hasard dans [0; 1[et renvoie le pre-
mier entier tel que R[i]⩾ u.

3. loi uniforme à densité

3

À programmer 20 (Test).
Tester la fonction précédente (on utilisera les fonctions Repetitions et Graphe)

• sur une loi non uniforme sur J0, 3K ;

• sur une loi uniforme sur J0, NK, pour N assez grand.

III.3 � Support plus général

On suppose maintenant que la loi de X est donnée par

Son support fini {x0, x1, . . . , xn }, valeurs toutes différentes, qui est représenté en mémoire
par un tableau (ou une liste) S, tel que S[i] = xi)

Les probabilités associées p0 = P (X = 0), p1 = P (X = 1),. . ., pn = P (X = n), qui sont repré-
sentées par un tableau P tel que P [i] = pi

À programmer 21 (Fonction Choisir).
Écrire une fonction Choisir(Support,Probabilites) qui renvoie un élément de S
choisi selon la probabilité P. La fonction tient en une ligne. La tester.

III.4 ��Une extension à un support dénombrable

Soit X la variable aléatoire définie par

X (Ω) =N∗ ∀i ∈N∗ P (X = i) = 6

k2π2

Sur papier 2 (Mathématique).
Montrer que l’on a ainsi définit une variable aléatoire.

Dans ce cas-là on ne peut pas créer un tableau représentant la probabilité, mais en uti-
lisant le même raisonnement on peut simuler cette variable aléatoire.

À programmer 22 (Implémentation).
Écrire une fonction Rieman() qui simule cette variable aléatoire.

À programmer 23 (Test).
Faire afficher le graphe des fréquences ; trouver une façon de vérifier que l’on a un
résultat cohérent avec la théorie.

À programmer 24 (Espérance).
Montrer qu’une telle variable aléatoire n’admet pas d’espérance, ni de variance. Illus-
trez ce résultat avec un programme.

IV Autres lois et expériences

Pour les lois qui suivent, vous pouvez vous renseigner sur les espérances, variances et
lois dans des ouvrages, ou sur wikipedia.

IV.1 Loi de Pascal

On répète des expériences de Bernoulli indépendantes et identiques. La variable aléa-
toire qui donne le rang d’apparition du n-ième succès suit une loi de Pascal de paramètres
n et p.

À programmer 25 (Simulation).
Écrire une fonction Pascal(n,p) qui simule cette variable aléatoire. Utiliser les fonc-
tions précédentes pour afficher la distribution, une estimation de l’espérance et de la
variance. Vérifier la cohérence avec les valeurs théoriques.

IV.2 Loi Binomiale négative

On répète des expériences de Bernoulli indépendantes et identiques. La variable aléa-
toire qui donne le nombre d’échecs obtenus avant l’apparition du n-ième succès suit une
loi binomiale négative de paramètres n et p.

À programmer 26 (Simulation).
Écrire une fonction BinNegative(n,p) qui simule cette variable aléatoire. Utiliser
les fonctions précédentes pour afficher la distribution, une estimation de l’espérance
et de la variance. Vérifier la cohérence avec les valeurs théoriques.

IV.3 Loi hypergéométrique

Une urne contient b boules blanches et a boules noires. On tire n boules successivement
et sans remise. La variable aléatoire X donnant le nombre de boules blanches obtenues suit
une loi hypergéométrique de paramètres n, a et b.

À programmer 27 (Simulation).
Écrire une fonction Hyper(n,a,b) qui simule cette variable aléatoire. Utiliser les
fonctions précédentes pour afficher la distribution, une estimation de l’espérance et
de la variance. Vérifier la cohérence avec les valeurs théoriques.

IV.4 Urnes de Pólya

Une urne contient a boules blanches et b boules noires, on pioche uniformément au
hasard une boule dans l’urne, puis, on replace la boule piochée ainsi que h autres boules de
la même couleur dans l’urne. On repète n fois cette expérience. La loi de Markov-Pólya de
paramètres a, b, h et n est alors la loi de la variable aléatoire X qui compte le nombre total
de boules blanches piochées au bout de ces n tirages.

À programmer 28 (Simulation).
Écrire une fonction Polya(n,a,b,h) qui simule cette variable aléatoire. Utiliser les
fonctions précédentes pour afficher la distribution, une estimation de l’espérance et
de la variance. Vérifier la cohérence avec les valeurs théoriques.

4

	Première simulation, et fonctions utiles
	Les lois classiques
	Reconnaître une loi

	Simuler une loi (finie) quelconque
	Le principe
	Implémentations
	22 Support plus général
	2222 Une extension à un support dénombrable

	Autres lois et expériences
	Loi de Pascal
	Loi Binomiale négative
	Loi hypergéométrique
	Urnes de Pólya

