Lycée Champollion, Grenoble 2025-2026
T.P. Informatique BCPST Spé

SIMULATIONS D’EXPERIENCES ALEATOIRES DISCRETES

Les parties marquées d’un a, ne doivent étre abordées que si vous avez de 1'avance.

Objectifs, motivations et premier pas

Dans ce TP nous allons créer des fonctions permettant de simuler les principales lois
usuelles discretes au programme et hors programme. Nous allons aussi utiliser des repré-
sentations graphiques pour visualiser les distributions des lois simulées.

11 faut bien distinguer

» Simuler une variable aléatoire ou une expérience aléatoire. On écrit une fonction py-
thon qui donne un résultat aléatoire qui correspond a I'expérience décrite. A chaque
fois que nous utiliserons cette fonction le résultat obtenu peut étre différent, mais
les fréquences d’obtention de chaque résultat doivent s’approcher de la probabilité
théorique.

¢ Calculer la loi d'une variable aléatoire, ce qui a été fait en cours de mathématiques.

Remarque : La plupart des fonctions que nous allons écrire existent déja dans différents
modules notamment numpy, numpy . random !. Quand cela est possible le corrigé indique la
fonction numpy qui effectue la tache demandée.

Nous proposons ici des versions naives qui ne correspondent pas toujours a celles utili-
sées en pratique mais utilisent les schémas classiques.

A programmer 1 (Préambule).
Télécharger le fichier Simulation.py. Le compléter en important les modules :

1. numpy avec l'alias np
2. numpy.random avec |'alias rd

3. matplotlib.pyplot avecl'alias p1t

La maitrise du module de tracé de graphe n’est pas un attendu du programme et il peut
étre compliqué sans entrainement d’obtenir des graphiques exploitables, c’est pourquoi on
vous donne une fonction Graphe, qui prend en argument un objet de type tableau et qui
affiche un graphe représentant les fréquences.

A programmer 2 (Test de la fonction Graphe).
Recopier la ligne suivante :
Graphe([0,1,2,1,2,1,0])

1. ou pour les distributions les plus récentes numpy . random. Generator

I Premiére simulation, et fonctions utiles

Consigne Dans la suite le seul générateur aléatoire que nous allons utiliser est la fonc-
tion :

numpy . random. random ()

qui renvoie un réel choisi de facon uniforme dans I'intervalle [0; 1[.

A programmer 3 (Bernoulli).

Ecrire une fonction Ber (p) qui, pour une valeur réelle p €]0; 1], renvoie une simula-
tion d'une variable aléatoire suivant la loi 28(p); les valeurs renvoyées doivent étre 0
oul.

Pour tester nos générateurs aléatoires, nous allons effectuer un grand nombre d’expé-
riences pour estimer les fréquences et calculer la moyenne et 'écart-type.... Nous allons
en profiter pour manipuler des tableaux numpy np . array, ce qui servira de rappel sur ce
module.

Rappels numpy
 Pour créer un tableau, on utilise par exemple np . array([1,2,0,3.5])

¢ On obtient la taille d'une matrice M a n lignes et p colonnes grace a n,p=M. shape;
pour un tableau unidimensionnel T de taille n on peut écrire n=1en(T).

¢ Pour accéder al’élément d'indice i d'un tableau T : T[i].
¢ On ne peut pas utiliser la méthode append sur ce type d’objet, la taille du tableau est
fixée a la création.

¢ Pour créer un grand tableau, on peut partir d'un tableau de la bonne taille rempli de 0
avec la commandes numpy . zeros, puis modifier les éléments a I'aide d'une boucle :
par exemple

1 T=np.zeros(10)
> for i in range(10):
3 T[i]=1

On peut effectuer des opérations sur le tableau élément par élément 2 sans utiliser de
boucle, par exemple : T**2 (resp. T+1) renvoie un nouveau tableau dont les éléments
sont les carrés de ceux de T (resp. ceux de T augmentés de 1)

¢ On peut obtenir facilement la somme des valeurs de T avec S = T.sum(). On peut

aussi obtenir la moyenne et I'écart-type des valeurs, les noms des méthodes sont ceux
utilisés en anglais.

A programmer 4 (Test).
Tester rapidement les commandes précédentes.

2. elementwise ou pointwise ou pointed operator

Nous commencons par créer une fonction générale qui permet de répéter un grand 025
nombre de fois une simulation et qui renvoie un tableau des valeurs obtenues. 020 020
Par exemple Repetition(100,Ber,0.5) va retourner une série de 100 simulations d'une
variable aléatoire suivant une loi de Bernoulli équilibrée. Comme il faut pouvoir passer des 015 o
arguments a la fonction et que la syntaxe est compliquée, on vous fournit un début de ré- 010 010
ponse.
0.05 0.05
A programmer 5 (Complétion). . . I I . 000 . ? I ?
Décommenter la fonction Repetition et la compléter. a 2 a & 8 0 3 & 8 S © 1
A programmer 6 (Test). A programmer 10 (Estimation des parametres).
Utiliser les fonctions Repetition et Graphe pour simuler un grand nombre de résul- En utilisant les fonctions Moyenne et EcartType, vérifier que I'on obtient des résul-
tats suivant une loi de Bernoulli. Choisir les paramétres pour obtenir un graphe tres tats cohérents avec les résultats du cours.
proche de

os o8 t A programmer 11 (Loi Géométrique).
07

0s En utilisant le modeéle classique de la loi géométrique, écrire une fonction Geometrique (p)

o8 qui simule le résultat d'une variable aléatoire suivant la loi ¢4 (p).
03 05
04
v o Remarque : Dans le cas ol1 p est tres petit, la boucle while peut se répéter un grand nombre
0.2

01 [de fois. nous verrons par la suite comment simuler cette loi autrement.
01

00 0.0 N
00 02 04 06 0B 10 00 0z as 06 08 10 A programmer 12 (Test).
En utilisant les fonctions Repetition et Graphe, tester votre fonction. Bien choisir le
parametre pour obtenir les graphes suivants :

A programmer 7 (Fonctions Moyenne et EcartType). -
025

Ecrire une fonction Moyenne (L) et une fonction EcartType (L) qui renvoient res- a7
pectivement la moyenne est I'écart-type de la série de valeurs représentées par le ta- 020 a6
bleau L. 05
015
0.4
Il Les lois classiques o [zj
IT 01
A programmer 8 (Loi binomiale). 000 11700 000nsee 20 r .
En utilisantle modele classique de laloi binomiale, écrire une fonction Binomiale (n,p) o 5 1w B W B W 5 12 3 4 s s T B

qui simule le résultat d'une variable aléatoire suivant la loi %(n, p).

A programmer 13 (Estimation des parametres).
A programmer 9 (Test). En utilisant les fonctions Moyenne et EcartType, vérifier que I'on obtient des résul-
En utilisant les fonctions Repetition et Graphe, tester votre fonction. Bien choisir tats cohérents avec les résultats du cours.
les parameétres pour obtenir des graphes proches des graphes suivants :
Loide Poisson Pour simuler une loi de Poisson, quin’est pas décrite par un schéma simple,
il existe plusieurs procédés. Nous en proposons une qui anticipe un peu sur le programme
du second semestre

Sur papier 1 (Calcul d’une Limite). On représente les probabilités par un tableau P tel que P[i] = p;.

Soit A > 0, et n € N* on suppose que X est une variable aléatoire qui suit la loi

2 Attention : On suppose de plus dans la suite que toutes les probabilités p; sont strictement positives <=
B(n,—)
1. Soit n € [0, n], rappeler la valeur de P(X;, = k). A programmer 17 (Validité).
ek Ecrire une fonction TestValide (P) qui renvoie True si P représente bien une pro-
2. calculer lim [1-2 babilité de ce type, False sinon.
n—+oo n
n nk On note R la fonction de répartition de X, c’est une fonction a valeurs dans [0; 1], crois-
3. Montrer que P Py sante, qui vérifie

k

4. Montrer que lim P(X,=k)= Z e RO) <R <-- < R(n)
n—+oo k!

On choisit un nombre réel U au hasard 3 dans [0; 1], il existe alors un unique indice i tel que

On dira que Xj, tend en loi vers une variable aléatoire suivant la loi 22(1)

R(i—1)<U<R(®)

A programmer 14. .
ousii=0,U <R

Pour simuler une variable aléatoire suivant la loi £2(1), on la remplace par une loi ()

"longueur de l'intervalle I"

1 "longueur de I'intervalle [0; 1[""
tel que = <0.1 Doncla probabilité P(R(i—1) < U < R(i)) est égale alalongueur del'intervalle |R(i — 1); R(i)]
n que divise 1; c’est a dire

A
%B(n,—) avec n "grand". En pratique si A < 15 on doit choisir n plus grand que 30 et Pour une loi uniforme sur [0; 1[, P(X € I) =
n ’ ’

Ecrire une fonction Poisson (1am) qui simule le résultat d'une variable aléatoire

suivant la loi 22(1). On commencera par calculer un n qui convient et on utilisera la

. . () S . P L d PRGE-1)KU<R@)=R{A)—-R(I-1)=P(X=1)
simulation de Binomiale implémenter précédemment.

. Algorithme Pour simuler la variable aléatoire X
A programmer 15 (Test).

En utilisant les fonctions Repetition et Graphe, tester votre fonction. Le faire pour
plusieurs paramétre et décrire 'influence de ce paramétre sur I'allure du graphique. * Trouver I'entier i qui vérifie R[i — 1] < u < R[i] ; on remarque que c’est le plus petit
entier i tel que R[i] > u

¢ Choisir un nombre réel u au hasard entre O et 1

II.1 Reconnaitre une loi
III.2 Implémentations

A programmer 16 (Reconnaissance de loi).

Le fichier fourni comporte deux séries de données Mysterel et Mystere2. Ces séries A programmer 18 (Répartition).

ont été générées en utilisant I'un des générateurs aléatoires précédents. Le but est Ecrire une fonction Repartition (P) qui pour un tableau P, de longueur n+ 1, repré-
de proposer une loi qui permette d’obtenir ce type de série. Pour chacune des deux sentant une loi d'une variable aléatoire, renvoie le tableau de méme longueur repré-
séries : sentant la fonction de répartition.

» Tracer le graphe de la distribution, et proposer une loi. Vie[o, n] Rlil = P(X < i)
¢ Estimer les parametres de cette loi; on pourra utiliser les fonction Moyenne et

EcartType.
A programmer 19 (Simulation).
Ecrire une fonction Simulation (R) qui prend en paramétre un tableau représentant
une fonction de répartition, choisit un réel u au hasard dans [0; 1] et renvoie le pre-
mier entier tel que R[i] > u.

III Simuler une loi (finie) quelconque

III.1 Le principe

On se donne une variable aléatoire X dont le support est [0, n], et telle que

Vie [[0, nﬂ , P(X=10)=p; 3. loi uniforme a densité

A programmer 20 (Test).
Tester la fonction précédente (on utilisera les fonctions Repetitions et Graphe)

* sur une loi non uniforme sur [0, 3];

¢ sur une loi uniforme sur [[0, N]], pour N assez grand.

IIL.3 La Support plus général

On suppose maintenant que la loi de X est donnée par
Son support fini {xg, x1,..., x5}, valeurs toutes différentes, qui est représenté en mémoire
par un tableau (ou une liste) S, tel que S[i] = x;)
Les probabilités associées pg = P(X =0), p; = P(X =1),..., pp = P(X = n), qui sont repré-
sentées par un tableau P tel que P[i] = p;

A programmer 21 (Fonction Choisir).
Ecrire une fonction Choisir (Support ,Probabilites) quirenvoie un élément de S
choisi selon la probabilité P. La fonction tient en une ligne. La tester.

II1.4 /[a [a Une extension a un support dénombrable

Soit X la variable aléatoire définie par

6
X(Q)=N* VieN* P(X=i)= ——
k22

Sur papier 2 (Mathématique).
Montrer que I'on a ainsi définit une variable aléatoire.

Dans ce cas-1a on ne peut pas créer un tableau représentant la probabilité, mais en uti-
lisant le méme raisonnement on peut simuler cette variable aléatoire.

A programmer 22 (Implémentation).
Ecrire une fonction Rieman () qui simule cette variable aléatoire.

A programmer 23 (Test).
Faire afficher le graphe des fréquences; trouver une facon de vérifier que 'on a un
résultat cohérent avec la théorie.

A programmer 24 (Espérance).
Montrer qu'une telle variable aléatoire n’admet pas d’espérance, ni de variance. Illus-
trez ce résultat avec un programme.

IV Autres lois et expériences

Pour les lois qui suivent, vous pouvez vous renseigner sur les espérances, variances et
lois dans des ouvrages, ou sur wikipedia.

IV.1 LoidePascal

On répete des expériences de Bernoulli indépendantes et identiques. La variable aléa-
toire qui donne le rang d’apparition du n-ieme succes suit une loi de Pascal de parametres
netp.

A programmer 25 (Simulation).

Ecrire une fonction Pascal (n,p) qui simule cette variable aléatoire. Utiliser les fonc-
tions précédentes pour afficher la distribution, une estimation de 'espérance et de la
variance. Vérifier la cohérence avec les valeurs théoriques.

IV.2 LoiBinomiale négative

On répéte des expériences de Bernoulli indépendantes et identiques. La variable aléa-
toire qui donne le nombre d’échecs obtenus avant 'apparition du n-iéme succes suit une
loi binomiale négative de parametres n et p.

A programmer 26 (Simulation).

Ecrire une fonction BinNegative (n,p) qui simule cette variable aléatoire. Utiliser
les fonctions précédentes pour afficher la distribution, une estimation de I'espérance
et de la variance. Vérifier la cohérence avec les valeurs théoriques.

IV.3 Loi hypergéométrique

Une urne contient b boules blanches et a boules noires. On tire n boules successivement
et sans remise. La variable aléatoire X donnant le nombre de boules blanches obtenues suit
une loi hypergéométrique de parameétres n, a et b.

A programmer 27 (Simulation).

Ecrire une fonction Hyper(n,a,b) qui simule cette variable aléatoire. Utiliser les
fonctions précédentes pour afficher la distribution, une estimation de I'espérance et
de la variance. Vérifier la cohérence avec les valeurs théoriques.

IV.4 Urnes de Pélya

Une urne contient a boules blanches et b boules noires, on pioche uniformément au
hasard une boule dans I'urne, puis, on replace la boule piochée ainsi que & autres boules de
la méme couleur dans I'urne. On repéte n fois cette expérience. La loi de Markov-Pélya de
parametres a, b, h et n est alors la loi de la variable aléatoire X qui compte le nombre total
de boules blanches piochées au bout de ces n tirages.

A programmer 28 (Simulation).

Ecrire une fonction Polya(n,a,b,h) quisimule cette variable aléatoire. Utiliser les
fonctions précédentes pour afficher la distribution, une estimation de I'espérance et
de la variance. Vérifier la cohérence avec les valeurs théoriques.

	Première simulation, et fonctions utiles
	Les lois classiques
	Reconnaître une loi

	Simuler une loi (finie) quelconque
	Le principe
	Implémentations
	22 Support plus général
	2222 Une extension à un support dénombrable

	Autres lois et expériences
	Loi de Pascal
	Loi Binomiale négative
	Loi hypergéométrique
	Urnes de Pólya

