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Exercice 1 : fonction définie par une intégrale
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Soit x €]0; +oo[. Pour tout 7 € [0; x],on a:
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En multipliant I'inégalité de la question précédente par ¢ € [0; x], on a < t < t
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Pour tout x €]0;+oo[, comme 0 < x on peut intégrer sur [0; x] 'inégalité précédente et on
obtient :
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Pour la derniere équivalence on a multiplié les membres de I'encadrement par — qui est un
X

réel positif.
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Ona lim = — = lim - donc d’apres le théoréme des gendarmes lim f(x) = —-.
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Or f(0) = 3 donc’ f est continue en 0.

est continue sur R*

e Comme ¢ — e’ + 1 ne s’'annule pas sur R*, la fonction ¢ — 1
el +

comme quotient de fonctions continue.

1 qui s’annule en 0. Comme nous
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est continue sur R* alors x — f mdt est de classe €’
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sur R*.
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De plus x — — estun fonction de classe € !'sur R* donc en particulier sur ]0; +ool.
X

Ainsi par produit, | f est de classe € sur ]0; +ocol. ‘




e De plus, pour tout x > 0,
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Donconal f'(x) = ! (x) avec g(x) = fx d dt x
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Donc g'(x) >0, et ainsi‘ g est croissante sur ]0; +ool. ‘

e De plus lin})g(x) =0 donc‘ pour tout x > 0, g(x) > 0. ‘
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On pourra remarquer aussi qu'avec l'aide de la question 1.b), on a directement le signe de
8(x).
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¢ Comme f’(x) = ——sg(x) et que g(x) > 0,on a f'(x) < 0 pour tout x > 0. f est donc
X

décroissante sur R**. Or on a montré que f est continue en 0.

f est donc décroissante sur R*.

3. (a) Onpose h(t) = e’ +1—t. h est dérivable sur R* et '(#) = e’ — 1 > 0. Donc & est croissante sur
R* et comme h(0) = 2, on a pour tout ¢ > 0,
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On a donc| pour tout £ >0, —— < 1.
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(b) D’apres la question précédente, pour tout £ > 0,0na 0 < — St
e
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En intégrant la relation précédente sur [0; x] avec x > 0, on obtient 0 < f dt < x puis
0
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2
en multipliant par — qui est un réel positif, on obtient 0 < f(x) < —.
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Enfin comme lim —=0= lim 0, d’apresle théoreme des gendarmes,| lim f(x)=0.
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Exercice 2 : suite d’intégrales

1
1. IO:f In(1+x)dx = [(x+ DIn(x+1) - x]§ =2In2 - 1.
0

2. (a) Pourtout x € [0;1] et tout n €N, x" > 0 et comme x+1 > 1, In(x + 1) > 0 donc par positivité
de l'intégrale, I, > 0.
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b) Iny1—-1I,= f ("™ = x™In(x+1dx =[ x"(x-1)In(x + 1)dx. Or pour tout x € [0;1], x* >0,

0 0
x—1<0etln(x+1) >0donc I,4; — I, <0, et ainsi la suite (I;;) est décroissante.

(c) (I,) est décroissante et minorée par 0 donc elle est convergente.

(a) Pour tout x € [0;1], In(x + 1) <In(2) < 1. Comme x" > 0, on en déduit que, pour tout x € [0;1],

X"In(x+1) < x™
1
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(b) On peutintégrer I'inégalité précédente sur [0;1] et on obtient [, < f x"dx = Pyt
0

(c) Onadoncdémontré que0 < I, < 1 D’apres le théoréme des gendarmes, nllIP I,=0.
n —+00

(a) On pose:
ux)=In(x+1 u'(x)= b
x+1
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v (x) = x" vix) = =—.
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Les fonctions u et v sont de classe € sur [0;1]. Par intégration par partiesona:
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(b) Pourtout x€[0;1],0< Tox <1donc0< " < x™1 En intégrant on obtient
X X

lxl’l+l 1
0<f dx < .
o 1+x n+2

Grace a la question précédente on obtient :
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(c) D’apres la question précédente :
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Or nhrP ol In2 et nhIP CFEICESI) = 0. Donc d’apres le théoreme des gendarmes
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