
Correction du devoir surveillé no 4

Exercice : Agro-véto

1. A2 =

0 0 0
0 0 0
1 0 0

 et A3 =

0 0 0
0 0 0
0 0 0

.

2. (a) On a ici :

AM = MA ⇔

0 0 0
a b c
d e f

 =

b c 0
e f 0
h i 0

⇔

 b = c = f = 0
a = e = i
d = h

.

On a donc

S =


a 0 0
d a 0
g d a

 , (a, d, g) ∈ R3


=
{
aI3 + dA+ gA2 , (a, d, g) ∈ R3

}
= vect(I3, A,A2).

(b) D’après la question précédente, S est un sous-espace engendré par une famille d’éléments de M3(R), c’est donc,
d’après notre cours, un sous-espace vectoriel de M3(R).

La famille (I3, A,A2) est génératrice de S . Montrons que cette famille est libre.
Soit (α, β, γ) ∈ R3. On a

αI3 + βA+ γA2 = 0 ⇔

α 0 0
β α 0
γ β α

 =

0 0 0
0 0 0
0 0 0


⇔ α = β = γ = 0.

La famille (I3, A,A2) est bien libre.

En conclusion, (I3, A,A2) est une base de S et dim(S ) = 3.

3. (a) On a M2 = PAP−1 × PAP−1 = PA2P−1 ̸= 0 car P et P−1 sont inversibles et A2 ̸= 0.
De plus M3 = PA2P−1 × PAP−1 = PA3P−1 = P0P−1 = 0.

Donc M ∈ S ′.

(b) i. M2 =

2 2 −2
0 0 0
2 2 −2

 ̸= 0 et M3 = 0.

Donc M ∈ S ′.
ii. M2 étant la matrice de f2 dans la base canonique de R3, on a par exemple f2(1, 0, 0) = (2, 0, 2) ̸= 0.

Le vecteur −→x = (1, 0, 0) vérifie bien que f2(−→x ) ̸= 0.

iii. Avec le choix fait dans la question précédente on a : B = ((1, 0, 0), (−1, 1, 0), (2, 0, 2)).
Soit (a, b, c) ∈ R3. On a :

a(1, 0, 0) + b(−1, 1, 0) + c(2, 0, 2) = (0, 0, 0) ⇔

 a− b+ 2c = 0
b = 0
2c = 0

⇔ a = b = c = 0.

Donc la famille B est libre et card(B) = dim(R3) donc B est une base de R3.
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iv. Comme

f(−→x ) = 0−→x + 1f(−→x ) + 0f2(−→x )

f(f(−→x )) = 0−→x + 0f(−→x ) + 1f2(−→x )

f(f2(−→x )) = 0−→x + 0f(−→x ) + 0f2(−→x )

la matrice de f dans la base B est

0 0 0
1 0 0
0 1 0

 = A.

v. A et M sont deux matrices associées au même endomorphisme f mais dans deux bases différentes donc, d’après
la formule de changement de base, il existe P matrice inversible telle que M = PAP−1.

(c) i. M2 étant la matrice de f2 dans la base canonique de R3 et M2 étant non nulle, f2 n’est pas l’application nulle.

Donc il existe nécessairement −→x tel que f2(−→x ) ̸= 0.
ii. On cherche tous les réels a, b et c tels que :

a−→x + bf(−→x ) + cf2(−→x ) =
−→
0 (⋆)

En appliquant la fonction f aux deux membres de l’égalité (⋆) on obtient :

af(−→x ) + bf2(−→x ) + cf3(−→x ) =
−→
0 car f est linéaire

⇒ af(−→x ) + bf2(−→x ) =
−→
0 car M3 = 0 donc f3 = 0

On applique à nouveau la fonction f et on obtient alors af2(−→x ) =
−→
0 pour les mêmes raisons.

On a donc

a−→x + bf(−→x ) + cf2(−→x ) =
−→
0 ⇐⇒

 a−→x + bf(−→x ) + cf2(−→x ) =
−→
0

af(−→x ) + bf2(−→x ) = 0
af2(−→x ) = 0

⇐⇒

 c = 0
b = 0
a = 0

Donc la famille B est libre et card(B) = dim(R3) donc B est une base de R3.
iii. Comme

f(−→x ) = 0−→x + 1f(−→x ) + 0f2(−→x )

f(f(−→x )) = 0−→x + 0f(−→x ) + 1f2(−→x )

f(f2(−→x )) = 0−→x + 0f(−→x ) + 0f2(−→x )

la matrice de f dans la base B est

0 0 0
1 0 0
0 1 0

 = A.

A et M sont deux matrices associées au même endomorphisme f mais dans deux bases différentes donc, d’après
la formule de changement de base, il existe P matrice inversible telle que M = PAP−1.

(d) D’après les questions 3.a) et 3.c), M ∈ S ′ si, et seulement si, M est semblable à A.

Problème 1 : Agro-véto

Partie A : Préliminaires

1. E(X) =
n+ 1

2
.
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2. Montrons par récurrence que la propriété P(n) :
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
est vraie pour tout n ∈ N∗.

— Comme
1× 2× 3

6
= 1, P(1) est bien vérifiée.

— Soit n ∈ N∗ fixé. Supposons que P(n) est vraie.
On a alors :

n+1∑
k=1

k2 =

n∑
k=1

k2 + (n+ 1)2 =
(n+ 1)(n(2n+ 1) + 6(n+ 1)

6
=

(n+ 1)(n+ 2)(2n+ 3)

6
.

Donc P(n+ 1) est vérifiée.

Grâce au principe de récurrence on a montré que pour tout n ∈ N∗,
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

3. Comme X est une variable aléatoire réelle finie, elle admet un moment d’ordre 2 et une variance. De plus :

E(X2) =

n∑
k=1

k2P (X = k) =

n∑
k=1

k2 × 1

n
=

1

n
× n(n+ 1)(2n+ 1)

6
=

(n+ 1)(2n+ 1)

6
.

Donc, d’après la formule de Kœnig-Huygens :

V (X) = E(X2)− (E(X))2 =
(n+ 1)(2n+ 1)

6
− (n+ 1)2

4
=

n2 − 1

12
.

Partie B : Étude d’un cas particulier
4. Deux possibilités s’offrent à nous après une expérience : soit on a tiré une boule blanche et on a donc ajouté une boule

blanche supplémentaire dans l’urne, et dans ce cas X1 = 2, soit on a tiré une boule noire et on a donc ajouté une boule
noire supplémentaire dans l’urne et dans ce cas X1 = 1.

Donc X1(Ω) = {1, 2} et P (X1 = 1) = P (X1 = 2) =
1

2
. (X1 suit la loi uniforme sur J1; 2K.)

5. On a X2(Ω) = J1; 3K. De plus :

P (X2 = 1) = P (B1 ∩B2) = P (B1)PB1
(B2) proba composées

=
1

2
× 2

3
=

1

3
, description de l’expérience

P (X2 = 2) = P ((B1 ∩B2) ∪ (B1 ∩B2))

= P (B1 ∩B2) + P (B1 ∩B2) union disjointe

=
1

2
× 1

3
+

1

2
× 1

3
proba composées

=
1

3

P (X2 = 3) = P (B1 ∩B2) =
1

2
× 2

3
=

1

3

Donc X2 suit une loi uniforme sur J1; 3K.

6. Montrons par récurrence que la propriété P(n) : « Xn suit la loi uniforme sur J1;n+ 1K », est vraie pour tout n ∈ N∗.

— D’après les questions précédentes, P(1) est vérifiée.
— Soit n ∈ N∗ fixé. Supposons P(n) vraie.

Avant la n+ 1ème expérience, l’urne contient au plus n+ 1 boules blanches et au moins une boule blanche.
Donc après la n+ 1ème expérience il y a entre 1 et n+ 2 boules blanches. Xn+1(Ω) = J1;n+ 2K.
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Pour tout k ∈ Xn+1(Ω), d’après la formule des probabilités totales appliquée avec le système complet d’événements
([Xn = i])i∈J1;n+1K on a :

P (Xn+1 = k) =

n+1∑
i=1

P (Xn = i)P[Xn=i](Xn+1 = k)

= 0 + P (Xn = k − 1)P[Xn=k−1](Xn+1 = k) + P (Xn = k)P[Xn=k](Xn+1 = k) + 0

écriture qui n’a du sens que pour k ̸= 1 et k ̸= n+ 2

=
1

n+ 1
× k − 1

n+ 2
+

1

n+ 1
× n+ 2− k

n+ 2

=
1

n+ 2
.

Pour k = 1, on a P (Xn+1 = 1) = P (Xn = 1)P[Xn=1](Xn+1 = 1) =
1

n+ 1
× n+ 1

n+ 2
=

1

n+ 2
.

Pour k = n+ 2, on a

P (Xn+1 = n+ 2) = P (Xn = n+ 1)P[Xn=n+1](Xn+1 = n+ 2) =
1

n+ 1
× n+ 1

n+ 2
=

1

n+ 2
.

Donc Xn+1 suit bien une loi uniforme sur J1;n+ 2K.

Grâce au principe de récurrence on a montré que pour tout n ∈ N∗, Xn suit une loi uniforme sur J1;n+ 1K.

7. D’après la formule des probabilités totales appliquée avec le système complet d’événements ([Xn = i])i∈J1;n+1K on a :

P (Bn+1) =

n+1∑
i=1

P (Xn = i)P[Xn=i](Bn+1)

=
1

n+ 1

n+1∑
i=1

i

n+ 2
i boules blanches et n+ 2 au total

=
1

(n+ 1)(n+ 2)

(n+ 1)(n+ 2)

2

=
1

2
.

Partie C : Retour au cas général

8. P (B1) =
N1

N
et d’après la formule des probabilités totales appliquée avec le système complet d’événements (B1, B1) :

P (B2) = P (B1)PB1
(B2) + P (B1)PB1

(B2)

=
N1

N
× N1 + 1

N + 1
+

N2

N
× N1

N + 1

=
N1(N1 + 1 +N2)

N(N + 1)
=

N1

N
.

9. (a) D’après la description des expériences successives, on a Xn−1(Ω) = JN1;N1 + n− 1K.
Appliquons la formule des probabilités totales avec le système complet d’événements ([Xn−1 = k])k∈JN1;N1+n−1K :

P (Bn) =

N1+n−1∑
k=N1

P (Xn−1 = k)P[Xn−1=k](Bn)

=

N1+n−1∑
k=N1

P (Xn−1 = k)× k

N + n− 1
.

On obtient donc bien
N1+n−1∑
k=N1

kP (Xn−1 = k) = (N + n− 1)P (Bn).
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(b) Avant le (n+ 1)ème tirage il y a N + n boules au total dans l’urne.
De plus, sachant que [Xn−1 = k]∩Bn est réalisé, avant le (n+1)ème tirage il y a k+1 boules blanches (il y en avait
k à l’issue du (n− 1)ème tirage et le nème tirage nous en a rajouté une).

Donc P[Xn−1=k]∩Bn
(Bn+1) =

k + 1

N + n

De même, P[Xn−1=k]∩Bn
(Bn+1) =

k

N + n
.

(c) La famille d’événements ([Xn−1 = k]∩Bn, [Xn−1 = k]∩Bn)k∈JN1;N1+n−1K forme un système complet d’événements.
D’après la formule des probabilités totales on a donc :

P (Bn+1) =

N1+n−1∑
k=N1

(
P ([Xn−1 = k] ∩Bn)P[Xn−1=k]∩Bn

(Bn+1) + P ([Xn−1 = k] ∩Bn)P[Xn−1=k]∩Bn
(Bn+1)

)

=

N1+n−1∑
k=N1

(
P ([Xn−1 = k] ∩Bn)

k + 1

N + n
+ P ([Xn−1 = k] ∩Bn)

k

N + n

)

=
1

N + n

N1+n−1∑
k=N1

P ([Xn−1 = k] ∩Bn) + k
(
P ([Xn−1 = k] ∩Bn) + P ([Xn−1 = k] ∩Bn)

)︸ ︷︷ ︸
P (Xn−1=k)




=
1

N + n

(
N1+n−1∑
k=N1

(P ([Xn−1 = k] ∩Bn) + kP (Xn−1 = k))

)

=
1

N + n


N1+n−1∑
k=N1

P ([Xn−1 = k] ∩Bn)︸ ︷︷ ︸
formule des probas totales

+

N1+n−1∑
k=N1

kP (Xn−1 = k)︸ ︷︷ ︸
question 2.a)


=

1

N + n
(P (Bn) + (N + n− 1)P (Bn))

= P (Bn).

10. D’après les questions 8. et 9.c), pour tout n ∈ N∗, P (Bn) =
N1

N
et d’après la question 9.a),

E(Xn) = (N + n)P (Bn+1) =
N1(N + n)

N
.

Problème 2 : G2E

Partie A : Ensemble de définition d’une fonction définie par une intégrale

1. (a) Pour tout réel x, lim
t→+∞

e−ttx+1 = 0 d’après la règle des croissances comparées.

Par définition d’une limite, on a :

∀ε > 0, ∃A > 0, tel que t ⩾ A =⇒ |e−ttx+1 − 0| ⩽ ε.

On choisit d’appliquer cette définition pour ε = 1, ce qui nous donne l’existence d’un réel T ⩾ 1 (dans la définition
on a > 0 mais on peut faire le choix d’imposer de prendre un réel ⩾ 1) tel que :

∀t ∈ [1; +∞[, t ⩾ T =⇒ e−t tx+1︸︷︷︸
=t2×tx−1

⩽ 1 =⇒ e−ttx−1 ⩽
1

t2
.

(b) Quel que soit le réel x, la fonction t 7→ e−ttx−1 est continue sur [1; +∞[. Donc
∫ +∞

1

e−ttx−1dt est impropre unique-

ment en +∞.

SpéBio 2025-2026 Page 5 Devoir surveillé no 4



On a vu que, pour tout t ⩾ T , 0 ⩽ e−ttx−1 ⩽
1

t2
.

Montrons que
∫ +∞

1

1

t2
dt est convergente :

∀α ⩾ 1,

∫ α

1

1

t2
dt = − 1

α
+ 1.

Or, lim
α→+∞

1− 1

α
= 1 ∈ R, donc

∫ +∞

1

1

t2
dt est convergente.

Par critère de majoration pour les intégrales de fonctions positives, on peut en déduire que

pour tout réel x,
∫ +∞

1

e−ttx−1dt est convergente.

2. (a) Si x ⩾ 1, la fonction t 7→ tx−1 est continue sur [0; 1] donc
∫ 1

0

tx−1dt est convergente.

Si x < 1, la fonction t 7→ tx−1 est continue sur ]0; 1]. Le problème de convergence se pose donc en 0.

Soit A ∈]0; 1]. Si x ̸= 0,
∫ 1

A

tx−1dt =
[
1

x
tx
]1
A

=
1

x
− 1

x
Ax.

Or, si x > 0, lim
A→0

Ax = 0 et si x < 0, lim
A→0+

Ax = +∞.

Donc si x > 0,
∫ 1

0

tx−1dt est convergente et vaut
1

x
, et si x < 0,

∫ 1

0

tx−1dt est divergente.

Pour le cas x = 0, on a
∫ 1

A

1

t
= − ln(A) et lim

A→0+
− ln(A) = +∞, donc

∫ 1

0

t−1dt est divergente.

En conclusion,
∫ 1

0

tx−1dt est convergente si, et seulement si, x > 0 et pour x > 0,
∫ 1

0

tx−1dt =
1

x
.

(b) Méthode 1 : par équivalence
On sait que e−t ∼

t→0
1 donc tx−1e−t ∼

t→0
tx−1.

Par critère d’équivalence pour les intégrales de fonctions positives, on sait donc que
∫ 1

0

tx−1dt et
∫ 1

0

e−ttx−1dt sont

de même nature.

Or on vient de montrer que
∫ 1

0

tx−1dt est convergente si, et seulement si, x > 0.

Donc
∫ 1

0

e−ttx−1dt est convergente si, et seulement si, x > 0.

Méthode 2 : par inégalités
Pour tout t ∈]0; 1], e−1 ⩽ e−t ⩽ 1, donc :

∀t ∈]0; 1], 0 ⩽ e−1tx−1 ⩽ e−ttx−1 ⩽ tx−1.

Si x > 0,
∫ 1

0

tx−1dt est convergente donc par critère de majoration pour les intégrales de fonctions positives,∫ 1

0

e−ttx−1dt est convergente.

Si x ⩽ 0,
∫ 1

0

tx−1dt est divergente donc
∫ 1

0

e−1tx−1dt est divergente et donc, par critère de minoration pour les

intégrales de fonctions positives,
∫ 1

0

e−ttx−1dt est divergente.

En conclusion,
∫ 1

0

e−ttx−1dt est convergente si, et seulement si, x > 0.

3. D’après les questions 1. et 2.
∫ +∞

0

e−ttx−1dt est convergente si, et seulement si, x > 0.

Donc le domaine de définition de Γ est R+∗.
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Partie B : Quelques propriétés de cette fonction
4. (a) Soit x > 0 fixé.

La fonction t 7→ e−ttx−1 est continue sur ]0; +∞[ et
∫ +∞

0

e−ttx−1dt est convergente.

De plus, pour tout t ∈]0;+∞[, e−ttx−1 ⩾ 0 et la fonction t 7→ e−ttx−1 n’est pas la fonction nulle sur ]0; +∞[.

Donc, par propriété de stricte positivité de l’intégrale, ∀x ∈ R+∗, Γ(x) > 0.

(b) Soit x > 0 fixé. Γ(x+ 1) =

∫ +∞

0

txe−tdt. On pose, pour t > 0 :

u(t) = tx u′(t) = xtx−1

v′(t) = e−t v(t) = −e−t

Les fonctions u et v sont de classe C 1 sur R+∗, lim
t→0

u(t)v(t) = 0 et lim
t→+∞

u(t)v(t) = 0 (croissances comparées).

Par théorème d’intégration par parties généralisé, comme Γ(x + 1) est convergente, on a
∫ +∞

0

u′(t)v(t)dt qui est

convergente et

Γ(x+ 1) = 0− 0 +

∫ +∞

0

xtx−1e−tdt = xΓ(x).

On a bien, ∀x ∈ R+∗, Γ(x+ 1) = xΓ(x).

(c) Γ(1) =

∫ +∞

0

e−tdt = 1. (Intégrale de référence)

Montrons par récurrence que la propriété P(n) : « Γ(n) = (n− 1)! » est vraie pour tout entier n ∈ N∗.
Pour n = 1, d’une part (n− 1)! = 0! = 1 et d’autre part Γ(1) = 1 donc P(1) est vraie.
Soit maintenant n ∈ N∗ fixé. Supposons P(n) vraie.
D’après la question précédente, Γ(n+ 1) = nΓ(n) = n(n− 1)! = n!. Donc P(n+ 1) est vérifiée.

Grâce au principe de récurrence on a montré que ∀n ∈ N∗, Γ(n) = (n− 1)!.

5. (a) On a montré que, pour tout x > 0, Γ(x) =
Γ(x+ 1)

x
et on sait que lim

x→0
Γ(x+ 1) = Γ(1) = 1 car Γ est continue en 1.

Donc par produit de limites, lim
x→0+

Γ(x) = +∞ .

Par caractérisation séquentielle de la limite, on sait que lim
x→+∞

Γ(x) = lim
n→+∞,n∈N

Γ(n).

Or Γ(n) = (n− 1)!. Donc lim
x→+∞

Γ(x) = +∞.

(b) Par caractérisation séquentielle, lim
x→+∞

Γ(x)

x
= lim

n→+∞

Γ(n)

n
.

Or
Γ(n)

n
=

(n− 1)!

n
=

n!

n2
. Donc, d’après la règles des croissances comparées, lim

x→+∞

Γ(x)

x
= +∞.

6. (a) D’après notre cours,
∫ +∞

−∞
e−

x2

2 dx =
√
2π.

Comme la fonction x 7→ e−
x2

2 est paire, on sait que
∫ +∞

−∞
e−

x2

2 dx = 2

∫ +∞

0

e−
x2

2 dx.

On a donc
∫ +∞

0

e−
x2

2 dx =

√
2π

2
.

(b) Par définition, Γ
(
1

2

)
=

∫ +∞

0

e−t

√
t
dt.

On pose alors u =
√
2t. La fonction t 7→

√
2t est de classe C 1 et strictement croissante sur ]0; +∞[. On a de plus

du =

√
2

2
√
t
dt et u varie de 0 à +∞.
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Grâce au théorème de changement de variable généralisé, comme on sait que
∫ +∞

0

e−t

√
t
dt est convergente, on a

Γ

(
1

2

)
=

∫ +∞

0

e−
u2

2

√
2du =

√
2×

√
2π

2
=

√
π.

On a donc Γ

(
1

2

)
=

√
π.

(c) On remarque que :

Γ

(
n+

1

2

)
=

(
n− 1

2

)
Γ

(
n− 1

2

)
=

(
n− 1

2

)(
n− 3

2

)
Γ

(
n− 3

2

)
...

=

(
n− 1

2

)(
n− 3

2

)
× . . .× 3

2
× 1

2
Γ

(
1

2

)
=

2n− 1

2
× 2n− 3

2
× . . .× 3

2
× 1

2
Γ

(
1

2

)
=

1

2n
× 2n(2n− 1)(2n− 2)(2n− 3) . . .× 3× 2× 1

2n(2n− 2) . . .× 4× 2
Γ

(
1

2

)
=

(2n)!

22nn!
Γ

(
1

2

)
=

(2n)!

22nn!

√
π .

Cette démonstration avec les pointillés n’est pas très rigoureuse mais vu la longueur de l’épreuve il est possible qu’aux
concours ce calcul soit suffisant. Voici la démonstration rigoureuse par récurrence :

Montrons par récurrence que la propriété P(n) : « Γ

(
n+

1

2

)
=

(2n)!

22nn!

√
π » est vraie pour tout entier n ∈ N.

Pour n = 0,
0!

200!

√
π =

√
π donc P(0) est vraie.

Soit maintenant n ∈ N fixé. Supposons P(n) vraie.
D’après la question 4.b),

Γ

(
n+ 1 +

1

2

)
=

(
n+

1

2

)
Γ

(
n+

1

2

)
=

2n+ 1

2
× (2n)!

22nn!

√
π

=
(2n+ 1)!

22n+1n!

√
π

=
(2n+ 2)!

2(n+ 1)22n+1n!

√
π =

(2(n+ 1))!

22(n+1)(n+ 1)!

√
π

Donc P(n+ 1) est vérifiée.

Grâce au principe de récurrence on a montré que ∀n ∈ N, Γ(n) =
(2n)!

22nn!

√
π.

Bonus : Des calculs
7. La fonction fa,λ est continue sur ]0; +∞[ donc l’intégrale est impropre en 0 et en +∞.

On considère le changement de variable C 1 et strictement croissant sur ]0; +∞[ : t = λx. On a alors dt = λdx et t varie
de 0 à +∞.
D’après le théorème de changement de variable généralisé, sous réserve de convergence, on a :∫ +∞

0

fa,λ(x)dx =
1

Γ(a)

∫ +∞

0

e−λx(λx)a−1λdx =
1

Γ(a)

∫ +∞

0

e−tta−1dt = 1.
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Donc
∫ +∞

0

fa,λ(x)dx est convergente et
∫ +∞

0

fa,λ(x)dx = 1.

8. On reprend le même changement de variable que dans la question précédente. Sous réserve de convergence :∫ +∞

0

xfa,λ(x)dx =

∫ +∞

0

λa

Γ(a)
e−λxxadx =

1

Γ(a)

∫ +∞

0

e−tta
dt
λ

=
1

λΓ(a)
Γ(a+ 1) =

a

λ
.

Donc
∫ +∞

0

xfa,λ(x)dx est convergente et
∫ +∞

0

xfa,λ(x)dx =
a

λ
.

9. Pour x < 0, on a bien F ′
a,λ(x) = fa,λ(x).

Pour x > 0 :

F ′
a,λ(x) = −

a−1∑
k=0

1

k!
(−λx+ k)λ(λx)k−1e−λx

= −λe−λx

(
−

a−1∑
k=0

1

k!
(λx)k +

a−1∑
k=1

1

(k − 1)!
(λx)k−1

)

= −λe−λx

(
−

a−1∑
k=0

1

k!
(λx)k +

a−2∑
k=0

1

k!
(λx)k

)

= λe−λx × (λx)a−1

(a− 1)!

=
λa

Γ(a)
e−λxxa−1 = fa,λ(x)

Fa,λ est bien une primitive de fa,λ sur R∗.
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