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I Rappels et définitions

I.1 Rappels généraux

Définition 1 (Variable aléatoire réelle).
On nomme variable aléatoire réelle sur l’espace probabilisable (Ω,T ), toute application X de Ω dans R telle que, pour tout a ∈ R ,
l’ensemble {ω ∈Ω : X (ω)⩽ a}, noté [X ⩽ a], soit un événement 1.

Dans toute la suite les variables aléatoires sont définies sur un espace probabilisé (Ω,T ,P).

Proposition 1.
Si X est une variable aléatoire réelle définie sur (Ω,A ) et si I est un intervalle de R, alors {ω ∈Ω : X (ω) ∈ I } est un événement que l’on note
[X ∈ I ].

Il faut connaître les théorèmes et définitions suivants de première année.

Définition 2 (Fonction de répartition).
Soit X une variable aléatoire réelle. La fonction de répartition de X est définie sur R par :

∀x ∈R FX (x) =P(X ⩽ x)

Attention : une fonction de répartition est toujours définie sur R.e
Proposition 2 (Utilisation de la fonction de répartition pour le calcul de probabilité).
On suppose que X est une variable aléatoire de fonction de répartition FX , alors pour tout a et réels tels que a < b

P(a < X ⩽ b) = FX (b)−FX (a)

Définition 3 (Fonction indicatrice).
Si A est un sous ensemble d’un ensemble E la fonction indicatrice de A est

1A : E → R

x 7→

1 si x ∈ A

0 sinon

I.2 Définitions

Définition 4 (Densité de probabilité).
Si f est une fonction définie sur l’ensemble des réels à valeurs dans R, positive sur R, continue sur R sauf éventuellement en un nombre

fini de points 2 et telle que
∫ +∞
−∞

f (t )dt converge et vérifie :

∫ +∞
−∞

f (t )dt = 1

1. Programme officiel Aucune vérification du fait qu’une fonction est une variable aléatoire ne sera demandée dans une épreuve de mathématiques.

2. Cette définition s’applique dans le cadre du programme de BCPST
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Alors on dit que f est une densité de probabilité.

Définition 5 (Variable à densité).
Soit X une variable aléatoire réelle de fonction de répartition FX .

On dit que X est une variable à densité si et seulement si il existe une densité de probabilité fX telle que

∀x ∈R FX (x) =
∫ x

−∞
fX (t )dt

Remarque : Dans ce contexte, donner la loi d’une variable aléatoire X , c’est justifier que X admet une densité et en donner une.

Proposition 3.
Si la fonction f est une densité de probabilité, alors il existe une variable aléatoire X telle que f soit une densité de X .

Proposition 4 (De la fonction de répartition à une densité).
Soit X une variable aléatoire réelle.

X admet une densité si et seulement si la fonction de répartition de X est continue sur R (en entier) et de classe C 1 sur R sauf éventuel-
lement en un nombre fini de points.

Dans ce cas là, une densité de X est donnée par la dérivée de FX en tout point où cela a un sens et en complétant arbitrairement aux
autres points.

Plus généralement toute fonction fX qui ne diffère de F ′
X qu’en un nombre fini de point est une densité de X .

Théorème 1 (Calcul de probabilité à l’aide d’une densité).
Si a et b sont deux réels ou égaux à ±∞ (a ⩽ b) et si X est une variable aléatoire de densité fX :

P(a ⩽ X ⩽ b) =P(a ⩽ X < b) =P(a < X ⩽ b) =P(a < X < b) =
∫ b

a
fX (t )dt

Attention : dans ce cas là P(X = a) = 0.e
Théorème 2 (Calcul de probabilité à l’aide de la fonction de répartition).
Si a et b sont deux réels ou égaux à ±∞, avec a < b et si X est une variable aléatoire à densité dont la fonction de répartition est FX

P(a ⩽ X ⩽ b) =P(a ⩽ X < b) =P(a < X ⩽ b) =P(a < X < b) = FX (b)−FX (a)

Méthode : Montrer qu’une fonction donnée est une densité

Si on donne f une fonction définie sur R à valeurs dans R et que l’on demande de vérifier que f est une densité
de probabilité il faut :

1. Montrer que f est positive.

2. Montrer que f est continue sur R sauf éventuellement en un nombre fini de points

3. Montrer que
∫ +∞
−∞

f (t )dt converge et vaut 1.
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Méthode : Après avoir calculer P(X ⩽ x)

Si après avoir calculé, en utilisant des raisonnements de probabilités,P(X ⩽ x) pour une variable aléatoire donnée,
on demande de montrer que X est une variable à densité, il faut vérifier :

1. Montrer que F est continue sur R en entier , de classe C 1 sur R sauf éventuellement en un nombre fini de
points

Dans ce cas là on peut affirmer que X est une variable aléatoire à densité dont peut calculer une densité en déri-
vant F en tout point où cela et possible et en complétant de façon arbitraire.

Méthode (rare) : Montrer qu’une fonction est une fonction de répartition d’une variable à densité

Si on donne F une fonction et que l’on demande de vérifier que F est la fonction de répartition d’une certaine
variable aléatoire qui admet une densité il faut :

1. Montrer que F est croissante.

2. Montrer que limx→+∞ F (x) = 1 et limx→−∞ F (x) = 0

3. Montrer que F est continue sur R, de classe C 1 sur R sauf éventuellement en un nombre fini de points
Dans ce cas là on peut affirmer que F est la fonction de répartition d’une certaine variable aléatoire dont peut
calculer une densité en dérivant F .

Attention : On fera bien attention à faire la différence de contexte entre les deux dernières méthodes ainsi que la différence entre lese
résultats obtenus.

II Lois classiques

II.1 Lois uniformes

Définition 6 (Loi, uniforme sur [0; 1]).
La fonction 1[0;1] définie sur R par

1[0;1](x) =

1 si x ∈ [0; 1]

0 sinon

définie une densité de probabilité.
Si une variable aléatoire X admet f comme densité on note X ,→U ([0; 1]). La fonction de répartition de X est alors la fonction définie sur
R par :

F (x) =


x si x ∈ [0; 1]

0 si x ⩽ 0

1 si x ⩾ 1

Définition 7 (Loi uniforme sur [a; b], avec a < b).
La fonction définie sur R par

f (x) =


1

b −a
si x ∈ [a; b]

0 sinon

ou f = 1

b −a
1[a;b]

définie une densité de probabilité.
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Si une variable aléatoire X admet f comme densité on note X ,→U ([a; b]). La fonction de répartition de X est alors la fonction définie sur
R par :

F (x) =



x −a

b −a
si x ∈ [a; b]

0 si x ⩽ a

1 si x ⩾ b

II.2 Lois exponentielles

Définition 8 (Densité et fonction de répartition).
Soit λ> 0 la fonction définie sur R par

f (x) =

λe−λx si x ⩾ 0

0 sinon

ou f (x) = 1R+ (x)λexp(−λx)

définie une densité de probabilité.
Si une variable aléatoire X admet f comme densité on note X ,→ E (λ). La fonction de répartition de X est alors la fonction définie sur R
par :

F (x) =

1−e−λx si x ⩾ 0

0 sinon

ou F (x) =
[

1−e−λx
]
1R+ (x)

Démonstration :

O

II.3 Lois normales, dites de Laplace-Gauss

Définition 9 (Loi normale centrée réduite).

La fonction définie sur R par ϕ : x 7→ 1p
2π

exp

(
− x2

2

)
définie une densité de probabilité.

Si une variable aléatoire X admet ϕ comme densité on note X ,→N (0,1). La fonction de répartition de X est alors la fonction définie sur
R par :

Φ : R → R

x 7→ 1p
2π

x∫
−∞

exp

(
− t 2

2

)
dt

Définition 10 (Cas général).
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Soit m un réel et σ un réel positif , la fonction définie sur R par ϕm,σ2 : x 7→ 1

σ
p

2π
exp

(
− (x −m)2

2σ2

)
définie une densité de probabilité. Si une variable aléatoire X admet ϕm,σ2 comme densité on note X ,→ N (m,σ2). La fonction de

répartition de X est alors la fonction définie sur R par :
N (m,σ2). La fonction de répartition associée est :

Φm,σ2 : R → R

x 7→ 1

σ
p

2π

x∫
−∞

exp

(
− (t −m)2

2σ2

)
dt

III Espérance et variance

Dans ce chapitre X est une variable aléatoire réelle qui admet une densité f ou fX si il y a besoin de différentier d’une autre densité.

III.1 Espérance

Définition 11 (Espérance).

On dit que X admet une espérance si et seulement si l’intégrale
∫ +∞
−∞

x f (x)dx converge absolument .

Dans ce cas là on note

E(X ) =
∫ +∞
−∞

x f (x)dx

Définition 12 (Variable centrée).
On dit qu’une variable est centrée si et seulement si son espérance est nulle.

Théorème 3 (Espérance des loi classiques).

• Une variable aléatoire suivant la loi U ([0; 1]) admet une espérance qui vaut
1

2
.

• Une variable aléatoire suivant la loi U ([a; b]) admet une espérance qui vaut
a +b

2
.

• Une variable aléatoire suivant la loi E (λ) admet une espérance qui vaut
1

λ
.

• Une variable aléatoire suivant la loi N (0,1) admet une espérance qui vaut 0.

• Une variable aléatoire suivant la loi N (m,σ2) admet une espérance qui vaut m.

Démonstration :
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O

III.2 Densité nulle en dehors d’un segment

Proposition 5.
Soit X une variable à densité, telle qu’une densité est nulle en dehors d’un intervalle [a; b], alors X admet une espérance et

a ⩽ E(X )⩽ b

Démonstration :

O

III.3 Théorème de transfert

Pour calculer l’espérance d’une variable définie à partir d’une autre, sans en calculer la loi, on peut utiliser le théorème de transfert.

Théorème 4 (Théorème de transfert).
Si X est une variable aléatoire admettant une densité fX nulle en dehors d’un intervalle ]a; b[ avec (−∞⩽ a < b ⩽ +∞) et si g est une
fonction continue sauf éventuellement en un nombre fini de points sur ]a; b[.
Alors g (X ) admet une espérance si et seulement si l’intégrale✒ ∫ b

a
g (t ) fX (t ) dt

converge absolument.
Dans ce cas là

E(g (X )) =
∫ b

a
g (t ) fX (t )dt
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Attention : Les hypothèses sont plus contraignantes que dans le cas discret.e
Exemple : Soit X suivant une loi exponentielle de paramètre λ. Calculer l’espérance de min(1, X )À retenir

III.4 Variance

Remarque : Pour le lien entre parité de la densité et calcul de l’espérance, de la variance voir l’exercice de la feuille de TD.

Définition 13 ( Moments d’ordre r ).
Soit X une variable aléatoire réelle et r un entier. On dit que X admet un moment d’ordre r si et seulement si X r admet une espérance et
on note

mr (X ) = E(X r )

Proposition 6 ( Critère d’existence d’un moment).
Si X est une variable aléatoire X ayant pour densité fX admet un moment d’ordre r si et seulement si l’intégrale suivante converge abso-
lument ∫ +∞

−∞
t r fX (t )dt

et alors

mr (X ) =
∫ +∞
−∞

t r fX (t )dt

Définition 14 (Variance et écart-type).
Par définition la variance est le moment d’ordre 2 de X −E(X ) si il existe

V (X ) = m2(X −E(X ))

Et l’écart-type est✒
σ(X ) =

√
V (X )

Théorème 5 (Formule de Koening-Huygens).
La variance d’une variable aléatoire X existe si et seulement si le moment d’ordre 2 existe et dans ce cas là l’espérance existe et✒

V (X ) = E(X 2)−(E(X ))2 = m 2 (X )−m 1 (X )2

III.4.a Lois classiques

Théorème 6.

• Une variable aléatoire suivant la loi U ([0; 1]) admet une variance qui vaut
1

12
.

• Une variable aléatoire suivant la loi U ([a; b]) admet une variance qui vaut
(b −a)2

12
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• Une variable aléatoire suivant la loi E (λ) admet une variance qui vaut
1

λ2

• Une variable aléatoire suivant la loi N (0,1) admet une variance qui vaut 1.

• Une variable aléatoire suivant la loi N (m,σ2) admet une variance qui vaut σ2.

Démonstration :

O

III.4.b Propriétés

Proposition 7 (Variance nulle).
Une variable aléatoire à densité qui admet une variance nulle est presque sûrement constante i.e. il existe α ∈R tel que

P(X =α) = 1

Proposition 8.
Soir X une variable aléatoire à densité admettant une variance et a, b deux réels avec alors

V (aX +b) = a2V (X )

✒
Définition 15 (Variable centrée et variable réduite).
On dit qu’une variable aléatoire est centrée si et seulement si elle admet une espérance et si

E(X ) = 0

On dit qu’une variable aléatoire est réduite si et seulement si elle admet une variance et si

V (X ) = 1

Proposition 9 ( Transformation en variable réduite-centrée).
Soit X une variable aléatoire à densité admettant une variance non nulle. On note σ son écart-type. Alors

X∗ = X −E(X )

σ

est une variable aléatoire à densité réduite-centrée.
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Démonstration :

O

IV Transfert

IV.1 Exemple de transfert Y = exp(X )

On suppose que X suit une loi exponentielle de paramètre λ> 0. On pose Y = exp(X ) calculons une densité de Y .

IV.1.a Exemple à connaître

Soit X une variable suivant la loi uniforme à densité sur l’intervalle [0; 1[ et λ> 0. On pose Y =− 1

λ
ln(1−X ) et on admet que Y est

une variable aléatoire réelle. Calculer une densité de Y .

Exercice 1.
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Soit X ,→U ([0; 1[) calculer l’espérance de − 1

λ
ln(1−X ).

V Généralisation de certains résultats vus au 1er semestre.

V.1 Indépendance

Définition 16 (Indépendance de deux variable aléatoires réelles).
Soit X et Y deux variables aléatoires réelles sont dit qu’elles sont indépendantes si et seulement si pour tout intervalle I et pour tout
intervalle J , on a

P([X ∈ I ]∩ [Y ∈ J ]) =P(X ∈ I )P(Y ∈ J )

Exercice 2.
Soit X et Y deux variables suivant la loi uniforme sur [0; 1]. On suppose que X et Y sont indépendantes. Calculer la loi de max(X ,Y ).

Définition 17 (Indépendance mutuelle de n variables aléatoires réelles).
Soit (Xi )i∈J1,nK une suite de variables aléatoires réelles. On dit qu’elles sont mutuellement indépendantes si et seulement si pour toute

famille (Ii )i∈J1,nK d’intervalles

P

(
n⋂

i=1
[Xi ∈ Ii ]

)
=

n∏
i=1

P
(
Xi ∈ Ii

)

Définition 18 (Indépendance mutuelle d’une suite de variables aléatoires réelles).
Soit (Xi )i∈N une suite de variables aléatoires réelles. On dit qu’elles sont mutuellement indépendantes si et seulement si pour tout sous-
ensemble fini K ⊂N fini et pour tout famille (Ii )i∈K d’intervalles

P

( ⋂
i∈K

Xi ∈ Ii

)
= ∏

i∈K
P

(
Xi ∈ Ii

)

lemme 1 (Lemme des coalitions).
Si (X1, X2, . . . , Xp , Xp+1, . . . Xn ) des variables aléatoires réelles mutuellement indépendantes. Alors toute variables aléatoire A qui est fonc-
tion des p premières et toute variable aléatoire B qui est fonction des n −p dernières sont indépendantes.

V.2 Propriétés de la variance et de l’espérance

Proposition 10 (Croissance de l’espérance).
Soit X et Y deux variables aléatoires qui admettent une espérance. On suppose que l’on a

P(X ⩽ Y ) = 1

alors
E(X )⩽ E(Y )

11



La plupart du temps on prend plus simplement comme hypothèse X ⩽ Y .

Proposition 11 (Rappel : linéarité de l’espérance).
Soit X et Y deux variables aléatoires réelles admettant une espérance.

Alors X +Y admet une espérance et
E(X +Y ) = E(X )+E(Y )

Proposition 12 (Espérance d’un produit indépendant.).
Soit X et Y deux variables aléatoires indépendantes réelles admettant une espérance.

Alors X Y admet une espérance.
E(X Y ) = E(X )E(Y )

Remarque : Nous n’avons pas besoin de savoir si X et Y sont des variables à densité, discrètes ou autres . . .

Proposition 13 (Variance d’une somme indépendante.).
Soit X et Y deux variables aléatoires indépendantes réelles admettant une variance alors X +Y admet une variance.

V (X +Y ) =V (X )+V (Y )

Proposition 14 (Généralisation à n variable aléatoires mutuellement indépendantes.).
Soit X1, X2, . . . Xn des variables aléatoires discrètes mutuellement indépendantes alors

• Si X1, . . ., Xn admettent une variance alors X1 +·· ·+Xn admet une variance et

V (X1 +·· ·+Xn ) =V (X1)+·· ·+V (Xn )

• Si X1, . . ., Xn admettent une espérance alors X1 X2 · · ·Xn admet une espérance et et

E(X1 X2 · · ·Xn ) = E(X1) ·E(X2) · · ·E(Xn )

VI Somme de variable aléatoires

Les formules de cette partie doivent être rappelées dans une épreuve.

Théorème 7 (Somme de deux variables aléatoires à densité).
Soit X une variable aléatoire dont on note f une densité, et Y une variable aléatoire dont on note g une densité. On suppose de plus que X
et Y sont indépendantes, alors X +Y admet une densité noté f ⋆ g , où

∀x ∈R ( f ⋆ g )(x) =
∫ +∞
−∞

g (t ) f (x − t )dt

et cette intégrale est bien convergente.

Proposition 15 (Commutativité du produit de convolution).
Si les intégrales définissant f ⋆ g convergent, alors f ⋆ g = g ⋆ f .

12



Exemple : X ,→ E (λ) et Y ,→ E (µ), calculons une densité de X +Y .

VII Propriétés des lois usuelles

VII.1 Transformation affine de loi uniforme✒
Proposition 16.
Soit X une variable aléatoire à densité telle que X ,→U ([0; 1]) et si a et b sont deux réels tels que a < b alors (b−a)X+a ,→ U ([a; b])

Démonstration :
Le résultat est hors programme mais il faut savoir le démontrer.

O

Exemple : Nous allons recalculer l’espérance et la variance de U ([a; b]) en utilisant cette remarque.

VII.2 Lois normales

On rappelle qu’une densité d’une loi normale N (m,σ2) est donnée par

∀t ∈R ϕm,σ2 (t ) = 1

σ
p

2π
exp

(
− (t −m)2

2σ2

)

Sa fonction de répartition est notée

∀x ∈R Φm,σ2 (x) =
∫ x

−∞
ϕm,σ(t )dt

13



Un cas particulier est la loi normale centrée réduite N (0,1) dont la densité est

∀t ∈R ϕ(t ) = 1p
2π

exp

(
− t 2

2

)
et sa fonction de répartition

Φ(x) =
∫ x

−∞
ϕ(t )dt

Proposition 17 (Symétrie de la fonction de répartition de la loi normale).
Avec les notations précédentes pour tout réel x

Φ(−x) = 1−Φ(x)

De plus Φ(0) = 1

2

Démonstration :

O

✒
Proposition 18 (Transformation affine d’une loi normale).
Soit X une variable aléatoire aléatoire telle que X ,→N (m,σ2), soit a et b deux réels tels que a ̸= 0 alors :

aX +b ,→N ( am +b, a2σ2 )

Exemple : Si X ,→N (0,1) alors σX +m ,→N (m,σ2).

Exemple : Si X ,→N (m,σ2) et si on note X∗ = X −m

σ
alors X∗ ,→N (0,1)

Proposition 19 (Somme de lois normales).
Soit X et Y deux variables aléatoires indépendantes telles que :

X ,→N (m,σ2) Y ,→N (m′,σ′2)

Alors✒
X +Y ,→N ( m +m′,σ2 +σ′2 )

Démonstration :
calculs durs, mais on utilise la formule de convolution.

O
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Exercice 3.
Soit X1, . . ., Xn n variables aléatoires réelles suivant des lois normales. On suppose qu’elles sont mutuellement indépendantes. Adapter
le résultat précédent à ce cas là.

VII.3 Loi sans mémoire

Proposition 20 (Loi sans mémoire/invariance temporelle).
Si X ,→ E (λ) alors pour tout réels s et t strictement positifs

PX⩾s (X ⩾ s + t ) = P (X ⩾ t )

Démonstration :

O

Proposition 21 (Réciproque, hors programme).
Si X est une variable à densité qui vérifie.

• pour P (X ⩽ 0) = 0

• Pour tout réels s et t positifs
PX>s (X > s + t ) = P (X > t )

Alors X suit une loi exponentielle.
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Récapitulatif

Nom Notation Support densité Fonction de répartition Espérance Variance

uniforme U ([a; b]) [a; b] ou ]a; b[ ou [a; b[ ou ]a; b]


1

b −a
si x ∈ [a; b]

0 sinon



x −a

b −a
si x ∈ [a; b]

0 si x ⩽ a

1 si x ⩾ b

a +b

2

(b −a)2

12

uniforme U ([0; 1]) [0; 1],]0; 1[ ou [0; 1[ ou ]0; 1]


1 si x ∈ [0; 1]

0 sinon



x si x ∈ [0; 1]

0 si x ⩽ 0

1 si x ⩾ 1

1

2

1

12

exponentielle E (λ) R+ ou R∗+


λe−λx si x ⩾ 0

0 sinon


1−e−λx si x ⩾ 0

0 sinon

1

λ

1

λ2

normale N (m,σ2) R
1

σ
p

2π
exp

(
− (x −m)2

2σ2

)
Φm,σ2 m σ2

normale centrée réduite N (0,1) R
1p
2π

exp

(
− x2

2

)
Φ 0 1
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