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Exercice Oral

1. La fonction f est dérivable sur R∗
+ comme somme de fonctions dérivables

et après calculs

∀x ∈ R∗
+ f ′(x) =

−1

x2(x+ 1)

f est donc strictement décroissante et continue sur l’intervalle R∗
+.

De plus

∀x ∈ R∗
+ f(x) = − ln

(
1 +

1

x

)
+

1

x

ce qui démontre que
lim

x→+∞
f(x) = 0

et
∀x ∈ R∗

+ f(x) =
1

x
(x ln(x) + 1)− ln (1 + x)

en utilisant le théorème des croissances comparées on démontre que

lim
x→0
x>0

f(x) = +∞

Comme 1 ∈

]
lim

x→+∞
f(x); lim

x→0
x>0

f(x)

[
, on peut appliquer le corollaire du

théorème des valeurs intermédiaires (ou le théorème de la bijection mono-
tone).

L’équation f(x) = 1 admet une unique solution dans R∗
+.

2. import math as m
def f(x):

return m.log(x)-m.log(x+1)+1/x

print("f(1/3)=",f(1/3))
print("f(1/2)=",f(1/2))
>>>f(1/3)= 1.6137056388801094
>>>f(1/2)= 0.9013877113318904

On constate que

f

(
1

2

)
⩽ 1 ⩽ f

(
1

3

)
C’est-à-dire

f

(
1

2

)
⩽ f(α) ⩽ f

(
1

3

)
Comme f est strictement décroissante sur R∗

+

1

3
⩽ α ⩽

1

2
.

3. def dicho(a,b,f,y,n):
'''renvoie une solution approchée
de y=f(x) sur l'intervalle [a,b]'''

eps=10**-n
while b-a>eps:

c=(a+b)/2
if (f(a)-y)*(f(c)-y)<0:

b=c
else:

a=c
return a,b

print(dicho(1/3, 1/2, f,1, 10))
>>>(0.46594127236555016, 0.4659412724431604)

4. Positivité Comme α > 0, la fonction Φ est à valeurs positives.
Régularité La fonction Φ est continue sauf éventuellement en α.
Intégrale En utilisant les calculs de la première question

Φ = −f ′

Soit x plus grand que α,∫ x

−∞
Φ(t) dt = −

∫ x

α

f ′(t) dt définition de Φ intégrale sur un segment

= −f(x) + f(α)

= −f(x) + 1 définition de α

Comme lim
+∞

f = 0

L’intégrale
∫ +∞

−∞
Φ(t) dt converge et vaut 1.

Φ est une densité de probabilité.
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5. On remarque que sous réserve de convergence absolue∫ +∞

−∞
tΦ(t) dt =

∫ +∞

α

tΦ(t) dt

L’intégrande étant alors positive, la convergence absolue se confond avec la
convergence et l’intégrale n’est impropre qu’en +∞.

tΦ(t) ∼
t→+∞

1

t2

On montre facilement par le calcul que l’intégrale
∫ +∞

α

1

t2
dt converge, en

utilisant le critère de comparaison sur les intégrales de fonctions positives∫ +∞

−∞
tΦ(t) dt converge absolument.

6. Pour t réel plus grand que α

tΦ(t)− 1

t2
=

1

t(t+ 1)
− 1

t2

=
t− (t+ 1)

t2(t+ 1)

= − 1

t2(t+ 1)

= f ′(t)

Pour tout t dans [α; +∞[, tΦ(t)− 1

t2
= f ′(t).

7. Méthode 1 Soit A > α∫ A

α

tΦ(t) dt =

∫ A

α

dt

t(t+ 1)

=

∫ A

α

(
1

t
− 1

t+ 1

)
dt

= [ln(t)− ln(t+ 1)]Aα
= ln(A)− ln(A+ 1)− ln(α) + ln(α+ 1)

= − ln

(
1 +

1

A

)
− ln(α) + ln(α+ 1)

= − ln

(
1 +

1

A

)
+

1

α
− 1

La dernière égalité s’obtient en remarquant que ln(α)−ln(α+1)+
1

α
=

1

Un calcul de limite immédiat montre que

lim
A→+∞

ln

(
1 +

1

A

)
= 0

∫ +∞

α

tΦ(t) dt =
1

α
− 1

Méthode 2 Soit A > α∫ A

α

tΦ(t) dt =

∫ A

α

(
f ′(t) +

1

t2

)
dt

=

[
f(t)− 1

t

]A
α

= f(A)− f(α)− 1

A
+

1

α

Comme on a démontré
lim
+∞

f = 0∫ +∞

α

tΦ(t) dt =
1

α
− 1

E(X) =
1

α
− 1.

Comme α <
1

2
cette quantité est bien positive.

Facultatif type ENS

Première partie

1. Soit c > 0. Pour x ∈ R∗
+

ln(cx)

ln(x)
= 1 +

ln c

lnx

comme ln tend vers +∞ quand x tend vers +∞

lim
x→+∞

ln(cx)

ln(x)
= 1

La fonction logarithme est à variation lente.
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2. Dans ce cas, comme c > 0 lim
x→+∞

cx = +∞ donc

lim
x→+∞

f(cx) = ℓ

Comme ℓ est un réel non nul :

lim
x→+∞

f(cx)

f(x)
=

ℓ

ℓ

Si lim
+∞

f ∈ R∗ alors f est à variation lente.

3. x 7→ 1

x
tend vers 0 quand x tend vers +∞ mais n’est pas à variation lente.

x 7→ 1

lnx
(prolongée en 1 de façon arbitraire) tend vers 0 en +∞ et est à

variation lente.

Deuxième partie

4. Par opération la fonction u 7→ h(u)

u
est continue sur [2; +∞[, en utilisant

le théorème fondamental de l’analyse, la fonction x 7→
∫ x

2

h(u)

u
du est

dérivable (et de classe C 1) sur [2; +∞[, de dérivée sur cet intervalle x 7→
h(x)

x
. Par composition avec la fonction exponentielle, qui est dérivable sur

R,

∀x ∈ [2; +∞[ f ′(x) =
h(x)

x
a exp

(∫ x

2

h(u)

u
du

)
=

h(x)

x
f(x)

Comme f est à valeurs strictement positives

Pour tout x ∈ [2; +∞[, h(x) =
xf ′(x)

f(x)
.

5. Un exemple
(a) D’après ce qui précède h doit vérifier

∀x ∈ [2; +∞[ h(x) =
x 1

x

lnx
=

1

lnx

La fonction x 7→ 1

lnx
est définie sur ]1; +∞[ continue sur cet intervalle

et de limite nulle en +∞. De plus une primitive de u 7→ 1

u lnu
sur

[2; +∞[ est u 7→ ln (| lnu|).
Donc pour x ∈ [2; +∞[

a exp

(∫ x

2

1

u lnu
du

)
= a exp (ln(ln(x))− ln(ln(2)))

= a
lnx

ln 2

Il suffit de poser a = ln(2) qui est bien strictement positif.

Pour tout x ∈ [2; +∞[, ln(x) = ln(2) exp

(∫ x

2

1

u lnu
du

)
.

La fonction u 7→ 1

u lnu
est continue sur ]1; +∞[, on peut donc pro-

longer l’égalité précédente sur cet intervalle.
6. Structure du raisonnement assez classique

Soit ϵ > 0 fixé, en utilisant la définition de lim
+∞

h(u) = 0, il existe M > 2 tel
que :

∀x ⩾ M |h(u)| ⩽ ϵ

Soit x plus grand que ce réel M :∫ x

M

h(u)

u
du ⩽

∫ x

M

∣∣∣∣h(u)u

∣∣∣∣ du ⩽ ϵ

∫ x

M

du

u
⩽ ϵ (ln(x)− ln(M))

Donc pour x plus grand que M :

f(x) = a exp

(∫ M

2

h(u)

u
du+

∫ x

M

h(u)

u
du

)
⩽ a exp

(∫ M

2

h(u)

u
du+ ϵ(ln(x)− ln(M))

)
car exp est croissante et a > 0

⩽ C1x
ϵ avec C1 =

a exp
(∫M

2

h(u)
u

du
)

M ϵ

On remarque que C1 est positif.

La fonction x 7→ f(x)

xϵ
est continue positive sur le segment [2; M ] donc

admet un maximum positif que l’on note C2. On a alors

∀x ∈ [2; M ] f(x) ⩽ C2x
ϵ

Finalement on note C = max(C1, C2), comme les quantités manipulées sont
positives :

∀x ∈ [2; M ] C2x
ϵ ⩽ Cxϵ et ∀x ∈ [M ; +∞] C1x

ϵ ⩽ Cxϵ

Pour tout ϵ > 0, il existe C > 0 tel que ∀x ∈ [2; +∞[, f(x) ⩽ Cxϵ.

3



7. Cas c > 1 Fixons ϵ′ > 0, par définition de lim
+∞

h, il existe M > 2 tel que

∀x ∈ [M ; +∞[ |h(x)| ⩽ ϵ′

donc pour x plus grand que M (les bornes de l’intégrale sont dans le
bon sens) ∣∣∣∣∫ cx

x

h(u)

u
du

∣∣∣∣ ⩽ ϵ′ (ln(cx)− ln(x))

donc ∣∣∣∣∫ cx

x

h(u)

u
du

∣∣∣∣ ⩽ ϵ′ ln(c)

Soit ϵ > 0, on applique le raisonnement précédent à ϵ′ = ϵ ln(c) qui
est bien strictement positif.

∀ϵ > 0, ∃M ∈ [2; +∞[ , ∀x ∈ [M ; +∞[

∣∣∣∣∫ cx

x

h(u)

u
du

∣∣∣∣ ⩽ ϵ

Ce qui est exactement la définition de

lim
x→+∞

∫ cx

x

h(u)

u
du = 0

Cas c < 1 Dans ce cas on constate que∫ cx

x

h(u)

u
du = −

∫ x

cx

h(u)

u
du = −

∫ x′ 1
c

x′

h(u)

u
du

En posant x′ = cx. On peut donc appliquer le résultats précédent avec

c′ =
1

c
qui est strictement plus grand que 1.

Comme c > 0 :

lim
x→

∫ cx

x

h(u)

u
du = − lim

x′→+∞

∫ x′ 1
c

x′

h(u)

u
du = 0

Cas c = 1 l’intégrale étudiée est nulle.

lim
x→+∞

∫ cx

x

h(u)

u
du = 0.

8. Pour c > 0 et x > 2.

f(cx)

f(x)
= exp

(∫ cx

x

h(u)

u
du

)
En utilisant la question précédente et la continuité de la fonction exponen-
tielle,

lim
x→+∞

f(cx)

f(x)
= 0

La fonction f est à variation lente.

Troisième partie.

9. Soit u un réel et n un entier naturel non nul[
X ⩽ u− 1

n

]
⊂ [X < u] ⊂ [X ⩽ u]

donc par croissance d’une probabilité

P

(
X ⩽ u− 1

n

)
⩽ P (X < u) ⩽ P (X ⩽ u)

donc
F

(
u− 1

n

)
⩽ P (X < u) ⩽ F (u)

Comme F est continue

lim
n→+∞

F

(
u− 1

n

)
= F (u)

et en utilisant le théorème des gendarmes

P (X < u) = F (u) = P (X ⩽ u)

Soit u un réel

F (u) = 1− P(X < u)

= 1− P(X ⩽ u) calcul précédent
= 1− F (u)

Comme F est continue sur R

F est continue sur R.

10. (a) Comme le support de X est inclus dans R∗
+ on en déduit F (0) = 0.

La fonction F est croissante, continue et lim
+∞

F = 1, donc F est conti-

nue, décroissante sur R, F (0) = 1 et lim
+∞

F = 0.

Soit n ∈ N∗ , comme lim
+∞

F = 0. il existe x1 > 0 tel que F (x1) <
1

n
<

F (0). On peut donc appliquer le théorème des valeurs intermédiaires
sur l’intervalle [0; x1] et la fonction continue F .

Pour n ∈ N∗, il existe an ∈ R∗
+ tel que F (an) =

1

n
.
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(b) Comme dans ce cas la fonction F est strictement décroissante on pour-
rait appliquer le théorème de la bijection qui donne l’unicité et permet
une rédaction plus facile de la question précédente.
Soit n ∈ N, on doit résoudre

exp(−λan) =
1

n

Si X ↪→ E (λ) et n ∈ N∗, an =
lnn

λ
.

ce réel est bien positif.
(c) Soit n ∈ N∗. X est une variable aléatoire à valeurs positives et qui

par hypothèse admet une espérance. Comme de plus an > 0, on peut
appliquer l’inégalité de Markov :

P (X ⩽ an) ⩽
E[X]

an

donc
F (an) ⩽

E[X]

an

puis
1

n
⩽

E[X]

an

an étant positif

Pour n ∈ N∗, E[X] ⩾
an

n
.

(d) On raisonne par l’absurde en utilisant le résultat précédent.
11. Soit u > 0 Comme g est à variation lente et que lim

n→+∞
an = +∞

g(uan) ∼
n→+∞

g(an)

et
g(an) = F (an)a

α
n =

aα
n

n

P(X ⩾ uan) = F (uan) définition de F

=
g(uan)

(uan)α

∼n→+∞
aα
n

n(uan)α
calculs précédents

P(X ⩾ uan) ∼
n→+∞

1

nuα
.

12. Soit u > 0

P

(
max (X1, . . . , Xn)

an
⩾ u

)
= P (max (X1, . . . , Xn) ⩾ uan) car an > 0

= 1− P (max (X1, . . . , Xn) < uan)

= 1− P

(
n⋂
i

[Xi < uan]

)

= 1−
n∏
i

P ([Xi < uan]) indépendance

= 1− (1− P ([Xi ⩾ uan]))
n les va ont même loi

= 1− exp (n ln (1− P ([Xi ⩾ uan])))

Or en utilisant la question précédente et α > 0

lim
n→+∞

P ([Xi ⩾ uan]) = 0

En utilisant
ln(1 + y) ∼y→0 y

n ln (1− P ([Xi ⩾ uan])) ∼
n→+∞

− 1

uα

ce qui démontre

lim
n→+∞

P

(
max (X1, . . . , Xn)

an
⩾ u

)
= 1− exp

(
− 1

uα

)
.
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