DM 11

BCPST Spé 2

Réponses

EXERCICE 1

E désigne l'espace des fonctions polynômes à coefficients réels, dont le degré est inférieur ou égal à l'entier naturel 2.

I.1 Étude d'un endomorphisme de E.

On considère l'application f qui, à tout élément P de E, associe la fonction polynôme Q telle que :

$$Q(X) = (X - 1) P'(X) + P(X)$$

et $\mathcal{B} = (P_0, P_1, P_2)$ la base canonique de E définie par :

$$P_0(X) = 1$$
, $P_1(X) = X$ et $P_2(X) = X^2$

1. Montrer que f est un endomorphisme de E. RÉPONSE:

Soit P_1 et P_2 deux polynômes de E et α un réel.

$$f(\alpha P_1 + P_2) = (X - 1)(\alpha P_1 + P_2)' + \alpha P_1 + P_2$$

$$= (X - 1)(\alpha P_1' + P_2') + \alpha P_1 + P_2 \qquad \text{linéarité de l'intégration}$$

$$= \alpha \left((X - 1)P_1' + P_1 \right) + (X - 1)P_2' + P_2$$

$$= \alpha f(P_1) + f(P_2)$$

Donc

f est linéaire

De plus si $P \in \mathbb{R}_2[X]$, alors

$$\deg(P') \leqslant 2 - 1$$

donc

$$\deg((X-1)P') \leqslant 1+1$$

et

$$deg((X-1)P'+P) \leq max(deg((X-1)P'), degP) \leq 2$$

f est un endomorphisme.

*

2. Vérifier que la matrice A de f dans \mathcal{B} , s'écrit sous la forme :

$$A = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 3 \end{array}\right)$$

RÉPONSE:

$$\begin{split} f(P_0)(X) &= (X-1) \cdot 0 + 1 \\ &= 1 + 0 \cdot x + 0 \cdot X^2 \\ f(P_1)(X)(X-1) \cdot 1 + X &= -1 + 2 \cdot X + 0 \cdot X^2 \\ f(P_2)(X) &= (X-1) \cdot 2X + X^2 \\ &= -2X + 3X^2 \end{split}$$

$$A = \left(\begin{array}{rrr} 1 & -1 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 3 \end{array} \right).$$

*

3. Déterminer l'image par f des fonctions polynômes R_0 , R_1 , R_2 définies par :

$$R_0(X) = 1$$
, $R_1(X) = X - 1$ et $R_2(X) = (X - 1)^2$

RÉPONSE:

Pour $x \in \mathbb{R}$

$$f(R_0)(X) = f(P_0)(X)$$

$$= R_0(X)$$

$$f(R_1)(X) = (X-1) \cdot 1 + X - 1$$

$$= 2R_1(X)$$

$$f(R_2)(X) = (X-1) \cdot 2(X-1) + (X-1)^2$$

$$= 3R_2(X)$$

On a
$$f(R_0) = R_0$$
, $f(R_1) = 2R_1$, $f(R_2) = 3R_1$.

*

4. Montrer que \(\mathscr{B}' = (R_0, R_1, R_2)\) est une base de E.
Écrire la matrice de passage \(P\) de la base \(\mathscr{B}\) à la base \(\mathscr{B}'\) ainsi que la matrice \(D\) de \(f\) dans la base \(\mathscr{B}'\).

RÉPONSE:

Répondons aux deux premières questions simultanément, on pose P la matrice dont les colonnes sont formées par les coordonnées de (R_0,R_1,R_2) exprimés dans la base (P_0,P_1,P_2)

$$P = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Comme cette matrice est triangulaire supérieure à coefficients diagonaux tous non nuls, elle est inversible

$$\mathscr{B}' = (R_0, R_1, R_2)$$
 est une base de E .

D'après la question précédente

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

*

5. Vérifier que:

$$\begin{cases} R_2(x) + 2R_1(X) + R_0(X) = P_2(X) \\ R_1(X) + R_0(X) = P_1(X) \end{cases}$$

En déduire la matrice de passage de la base \mathscr{B}' à la base \mathscr{B}

RÉPONSE:

Par le calcul, on trouve ce qui est demandé et o constate en plus que $P_0=R_0$, l'énoncé nous donne la décomposition des vecteurs de la base canonique dans la base \mathscr{B}' , P^{-1} est la matrice qui est demandée est la matrice dont les colonnes sont formées des coordonnées des vecteurs de la bases canonique exprimés dans la base \mathscr{B}'

$$P^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

*

6. Écrire A^{-1} en fonction de D^{-1} . Démontrer par récurrence que pour tout entier naturel n :

$$\left[A^{-1}\right]^n = P\left[D^{-1}\right]^n P^{-1}$$

et expliciter la troisième colonne de la matrice $[A^{-1}]^n$.

RÉPONSE:

D'après la formule de changement de base

$$A = PDP^{-1}$$

donc d'après la formule d'inversion d'un produit

$$A^{-1} = \left(P^{-1}\right)^{-1} D^{-1} P^{-1}$$

$$A^{-1} = PD^{-1}P^{-1}.$$

La récurrence est laissée en exercice. Comme D est diagonale,

cette matrice étant elle même diagonale, pour tout $n \in \mathbb{N}$

$$\left(D^{-1}\right)^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2^n} & 0 \\ 0 & 0 & \frac{1}{3^n} \end{pmatrix}$$

ce qui permet de calculer

La dernière colonne de
$$\left[A^{-1}\right]^n = \begin{pmatrix} 1 - 2\left(\frac{1}{2}\right)^n + \left(\frac{1}{3}\right)^n \\ \left(\frac{1}{2}\right)^n - 2\left(\frac{1}{3}\right)^n \\ \left(\frac{1}{3}\right)^n \end{pmatrix}$$
.

*

I.2 Suite d'épreuves aléatoires.

On dispose d'une urne qui contient trois boules numérotées de 0 à 2. On s'intéresse à une suite d'épreuves définies de la manière suivante :

- La première épreuve consiste à choisir au hasard une boule dans cette urne.
- Si j est le numéro de la boule tirée, on enlève de l'urne toutes les boules dont le numéro est strictement supérieur à j, le tirage suivant se faisant alors dans l'urne ne contenant plus que les boules numérotées de 0 à j.

On considère alors la variable aléatoire réelle X_k égale au numéro de la boule obtenue à la $k^{\grave{e}me}$ épreuve $(k\geqslant 0)$

On note alors U_k la matrice unicolonne définie par :

$$U_k = \left(\begin{array}{c} P(X_k = 0) \\ P(X_k = 1) \\ P(X_k = 2) \end{array}\right)$$

où P $[X_k = j]$ est la probabilité de tirer la boule numéro j à la $k^{\grave{e}me}$ épreuve. On convient de définir la matrice U_0 par :

$$U_0 = \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right)$$

1. Déterminer la loi de X_2 Calculer l'espérance et la variance de X_2 RÉPONSE:

On considère le système complet d'évènements $[X_1=0]$, $[X_1=1]$, $[X_1=2]$. Comme le premier tirage se fait de façon honnête dans la l'urne non modifiée

$$P[X_1 = 0] = P[X_1 = 1] = P[X_1 = 2] = \frac{1}{3}$$

On sait de plus que

- si $X_1 = 2$ est réalisé l'urne comporte encore les boules $\{0, 1, 2\}$
- si $X_1 = 2$ est réalisé l'urne comporte encore les boules $\{0, 1\}$
- si $X_1 = 0$ est réalisé l'urne ne comporte que la boules $\{0\}$

D'après le théorème des probabilités totales

$$\begin{split} P(X_2=0) &= P[X_1=0]P_{[X_1=0]}[X_2=0] + P[X_1=1]P_{[X_1=1]}[X_2=0] + P[X_1=2]P_{[X_1=2]}[X_2=0] \\ &= \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{1} \\ &= \frac{11}{18} \end{split}$$

$$\begin{split} P(X_2=1) &= P[X_1=0]P_{[X_1=0]}[X_2=1] + P[X_1=1]P_{[X_1=1]}[X_2=1] + P[X_1=2]P_{[X_1=2]}[X_2=1] \\ &= \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{3} \\ &= \frac{5}{18} \end{split}$$

$$\begin{split} P(X_2=2) &= P[X_1=0]P_{[X_1=0]}[X_2=2] + P[X_1=1]P_{[X_1=1]}[X_2=1] + P[X_1=2]P_{[X_1=2]}[X_2=2] \\ &= \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot \frac{1}{3} \\ &= \frac{2}{18} \end{split}$$

$$P(X_2 = 0) = \frac{11}{18} P(X_2 = 1) = \frac{5}{18} P(X_2 = 2) = \frac{2}{18}.$$

Comme la variable aléatoire est à support fini elle admet une espérance et

$$E(X_2) = 0P(X_2 = 0) + 1 \cdot P(X_2 = 1) + 2 \cdot P(X_2 = 2)$$
$$= 0 + \frac{5}{1}8 + \frac{4}{1}8$$
$$= \frac{1}{2}$$

 X_2 admet une espérance qui vaut $\frac{1}{2}$

*

2. Par utilisation de la formule des probabilités totales, prouver que pour tout entier naturel k:

$$U_{k+1} = A^{-1}U_k$$

RÉPONSE:

D'après le théorème des probabilités totales, avec le système complet d'évènements $[X_k=0],\ [X_k=1],\ [X_k=2]$

$$\begin{split} P(X_{k+1} = 0) &= P[X_k = 0]P_{[X_k = 0]}[X_{k+1} = 0] + P[X_k = 1]P_{[X_k = 1]}[X_{k+1} = 0] + P[X_k = 2]P_{[X_k = 2]}[X_{k+1} = 0] \\ &= P[X_k = 0] \cdot \frac{1}{1} + P[X_k = 1] \cdot \frac{1}{2} + P[X_k = 2] \cdot \frac{1}{3} \end{split}$$

$$\begin{split} P[X_{k+1} = 1) &= P[X_k = 0]P_{[X_k = 0]}[X_{k+1} = 1] + P[X_k = 1]P_{[X_k = 1]}[X_{k+1} = 1] + P[X_k = 2]P_{[X_k = 2]}[X_{k+1} = 1] \\ &= P[X_k = 0] \cdot 0 + P[X_k = 1] \cdot \frac{1}{2} + P[X_k = 2] \cdot \frac{1}{3} \end{split}$$

$$\begin{split} P(X_{k+1} = 2) &= P[X_k = 0]P_{[X_k = 0]}[X_{k+1} = 2] + P[X_k = 1]P_{[X_k = 1]}[X_{k+1} = 2] + P[X_k = 2]P_{[X_k = 2]}[X_{k+1} = 2] \\ &= P[X_k = 0] \cdot 0 + P[X_k = 1] \cdot 0 + P[X_k = 2] \cdot \frac{1}{3} \end{split}$$

Ce que l'on peut écrire

$$\begin{pmatrix} P[X_{k+1} = 0] \\ P[X_{k+1} = 1] \\ P[X_{k+1} = 2] \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} P[X_k = 0] \\ P[X_k = 1] \\ P[X_k = 2] \end{pmatrix}$$

et on vérifie que

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & \frac{1}{3} \end{pmatrix} A = A \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

ce qui démontre que la matrice trouvée est l'inverse de A

Pour tout entier naturel $k: U_{k+1} = A^{-1}U_k$.

*

3. Écrire U_k en fonction de A^{-1} et U_0 <u>RÉPONSE:</u>

On démontrerait par récurrence (à faire?)

Pour tout entier $k \in \mathbb{N}$, $\left[A^{-1}\right]^k U_0$.

Remarque: la formule est vraie pour k=1 car on a bien choisie U_0 , on a considéré qu'au temps 0 la bille 3 a été tirées, au début de l'étape 1 l'urne contient bien $\{0,1,2\}$ c'est bien l'urne initiale

*

4. Pour tout k de \mathbb{N} , donner la loi de X_k et vérifier que l'on a :

$$\lim_{k \to +\infty} \mathbf{P}\left[X_k = 0\right] = 1, \quad \lim_{k \to +\infty} \mathbf{P}\left[X_k = 1\right] = 0, \quad \lim_{k \to +\infty} \mathbf{P}\left[X_k = 2\right] = 0$$

RÉPONSE:

•

*

EXERCICE 2

Dans tout l'exercice, on notera $\mathcal{M}_3(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 3 et I la matrice identité d'ordre 3. On considère la matrice A définie par :

$$A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 2 & 2 \\ -3 & 3 & 1 \end{pmatrix}$$

L'objectif de cet exercice est de déterminer l'ensemble des matrices M de $\mathcal{M}_3(\mathbb{R})$ telles que $M^2=A$.

Partie A : étude de la matrice A

1. Calculer les matrices $(A - I)^2$ et $(A - I)^3$. RÉPONSE:

On trouve

$$(A-I)^2 = \begin{pmatrix} -6 & 6 & 0 \\ -6 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ et } (A-I)^3 = 0$$

*

2. La matrice A est-elle inversible? RÉPONSE:

La matrice A est inversible (calculs à faire)

*

Partie B: Recherche d'une solution particulière

On note pour tout $x \in]-1; 1[, \varphi(x) = \sqrt{1+x}]$.

3. Justifier que la fonction φ est de classe \mathscr{C}^2 sur]-1; 1[, et déterminer les valeurs de $\varphi'(0)$ et $\varphi''(0)$.

RÉPONSE:

La fonction $x \mapsto x+1$ est de classe \mathscr{C}^2 sur]-1;1[et sur cet intervalle elle prend des valeurs sur]0;1[.

La fonction $u\mapsto \sqrt{u}$ est de classe \mathscr{C}^2 sur $]0;+\infty[$ (on a exclu 0) donc par composition

La fonction
$$\varphi$$
 est de classe \mathscr{C}^2 sur]–1; 1[

On a pour $x \in]-1;1[$

$$\varphi'(x) = \frac{1}{2\sqrt{1+x}}$$
$$\varphi''(x) = -\frac{1}{4(1+x^{3/2})}$$

$$\varphi'(0) = \frac{1}{2}$$
 et $\varphi''(0) = -\frac{1}{4}$

*

4. Citer la formule de Taylor-Young pour φ en 0 à l'ordre 2, et **calculer** un réel α non nul tel que :

$$\sqrt{1+x} = 1 + \frac{1}{2}x + \alpha x^2 + x^2 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.

RÉPONSE:

La fonction étant de classe \mathscr{C}^2 on peut appliquer la formule de taylor Young et donc

$$\sqrt{1+x} = \varphi(0) + x\varphi'(0) + \frac{\varphi'(0)}{2}x^2 + o(x^2)$$

Et donc

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2\varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.

*

5. On note $P(x) = 1 + \frac{1}{2}x + \alpha x^2$ la fonction polynomiale de degré 2 ainsi obtenue. Développer $(P(x))^2$.

RÉPONSE:

$$(P(x))^{2} = \left(1 + \frac{1}{2}x - \frac{1}{8}x^{2}\right)^{2}$$

$$= 1^{2} + \left(\frac{1}{2}x\right)^{2} + \left(-\frac{1}{8}x^{2}\right)^{2} + 2 \times 1 \times \left(\frac{1}{2}x\right) + 2 \times 1 \times \left(-\frac{1}{8}x^{2}\right) + 2 \times \left(\frac{1}{2}x\right)\left(-\frac{1}{8}x^{2}\right)$$

$$= 1 + \frac{1}{4}x^{2} + \frac{1}{64}x^{4} - \frac{1}{4}x^{2} - \frac{1}{8}x^{3}$$

$$= 1 - \frac{1}{8}x^{3} + \frac{1}{64}x^{4}$$

$$P(x)^2 = 1 + x - \frac{1}{8}x^3 + \frac{1}{64}x^4$$

*

6. Soit C=A-I. En utilisant les résultats de la question 1, vérifier que $(I+\frac{1}{2}C+\alpha C^2)^2=A$.

Expliciter alors une matrice M telle que $M^2 = A$.

RÉPONSE:

On constate que $C^3 = 0$, donc $C^3 = C^4 = 0$. n a

$$(I + \frac{1}{2}C + \alpha C^2)^2 = (P(C))^2 = I + C - \frac{1}{8}C^3 + \frac{1}{64}C^4 - \frac{1}{4}C^2 - \frac{1}{8}C^3 = I + C = A$$

$$(P(C))^2 = A$$

Partie C: Résolution complète de l'équation

On munit l'espace vectoriel \mathbb{R}^3 de sa base canonique $\mathscr{B}=(\mathbf{e_1},\mathbf{e_2},\mathbf{e_3})$. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice représentative dans la base \mathscr{B} est la matrice A.

Dans cette partie, on pose : $T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

- 7. Soient u, v et w les vecteurs définis par : $\begin{cases} w = (1,0,1), \\ v = f(w) w, \\ u = f(v) v. \end{cases}$
- (a) Calculer les vecteurs v et u.

RÉPONSE:

La matrice de l'application f-Id dans la base canonique est A-I que l'on a calculer précédemment. On a aussi $u=(f-Id)\circ (f-Id)(w)$ Pour calculer ces vecteurs on utilise la matrice A-I et $(A-I)^2$

$$(A-I)\begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\-3 \end{pmatrix}$$

Donc le vecteur v a pour coordonnées dans la base canonique (1,1,-3)

$$(A-I)^2 \begin{pmatrix} 1\\0\\1 \end{pmatrix} = \begin{pmatrix} -6\\-6\\0 \end{pmatrix}$$

Donc le vecteur v a pour coordonnées dans la base canonique (-6, -6, 0)

*

(b) Démontrer que la famille $\mathscr{B}'=(u,v,w)$ est une base de $\mathbb{R}^3.$ RÉPONSE:

Soit α , β et γ trois réels

$$\alpha u + \beta v + \gamma w = 0 \Leftrightarrow \dots A finir$$

 $\Leftrightarrow \alpha = \beta = \gamma = 0$

La famille (u, v, w) est libre. Comme de plus Dim $\mathbb{R}^3 = 3$

$$(u,v,w)$$
 est une base de \mathbb{R}^3

*

(c) Déterminer la matrice représentative de f dans la base \mathscr{B}' . RÉPONSE:

D'apres la définition des trois vecteurs (u, v, w) on sait que

$$f(v) = u + v$$
 $f(w) = v + w$

Ce qui nous donne les deux dernières colonnes de la matrice Puis en utilisant On a aussi $(A-I)^3=0$ donc

$$(f-Id)\circ (f-Id)\circ (f-Id)(w)=0$$

ce qui donne

$$(f-Id)\circ (f-Id)(v)=0$$

puis

$$(f - Id)(u) = 0$$

donc

$$f(u) = u$$

Ce qui permet de remplir la première colonne

La matrice représentative de f dans la base \mathscr{B}' est T

ĸ

(d) En déduire qu'il existe une matrice $P \in \mathcal{M}_3(\mathbb{R})$ inversible telle que $T = P^{-1}AP$.

RÉPONSE:

Cette matrice P est la matrice de passage de la base canonique vers la base B'. On la construit en mettant dans les colonnes es coordonnées des vecteurs de \mathcal{B}' décomposés dans la base canonique.

*

- 8. Soit $M \in \mathcal{M}_3(\mathbb{R})$.
 - (a) Montrer que si $N^2 = T$, alors NT = TN. En déduire alors que N est de la forme:

$$\begin{pmatrix}
a & b & c \\
0 & a & b \\
0 & 0 & a
\end{pmatrix}$$

où a, b et c sont trois réels.

RÉPONSE:

On suppose que $N^2 = T$ alors

$$NT = NN^2 = N^3$$

et

$$TN = N^2 N = N^3$$

donc

Si
$$N^2 = T$$
, alors $NT = TN$

On suppose que $N^2 = T$ alors on sait que NT = TN. Cherchons N sous la forme

$$N = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

Alors NT = TN peut s'écrire

$$\begin{pmatrix} a+d & b+e & c+f \\ d+g & e+h & f+i \\ g & h & i \end{pmatrix} = \begin{pmatrix} a & a+b & b+c \\ d & d+e & e+f \\ g & g+h & h+i \end{pmatrix}$$

Cette égalité entre deux matrices nous donne le système a neufs équations et neuf inconnues

$$\begin{vmatrix} a+d & = a \\ b+e & = a+b \\ c+f & = b+c \\ d+g & = d \\ e+h & = d+e \\ f+i & = e+f \\ g & = g \\ h & = g+h \\ i & = h+i \end{vmatrix}$$

Donc

$$d = 0$$

$$e = a$$

$$f = b$$

$$g = 0$$

$$h = d$$

$$i = e$$

$$g = 0$$

$$i = 0$$

$$\begin{cases} d = 0 \\ e = a \end{cases}$$

$$f = b$$

$$g = 0$$

$$h = 0$$

$$i = a$$

$$g = 0$$

$$h = 0$$

Si
$$N^2 = T$$
, alors $N = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$

(b) Démontrer alors que l'équation matricielle $N^2 = T$ admet exactement deux solutions : N_1 et N_2 .

RÉPONSE:

On peut donc chercher les solutions sous la forme $N = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$ L'équa-

tion $N^2=T$ est équivalente à

$$\begin{pmatrix} a^2 & 2ab & 2ac + b^2 \\ 0 & a^2 & 2ab \\ 0 & 0 & a^2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Ce qui est équivalent à

$$\begin{cases} a^2 &= 1\\ 2ab &= 1\\ 2ac + b^2 &= 0 \end{cases}$$

If y a donc dexu solutions pour $a = \pm 1$

Avec a = 1 On a une solution

$$N_1 = \begin{pmatrix} 1 & 1/2 & -1/8 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \end{pmatrix}$$

et avec a = -1 on trouve une autre solution

$$N_2 = \begin{pmatrix} -1 & -1/2 & 1/8 \\ 0 & -1 & -1/2 \\ 0 & 0 & -1 \end{pmatrix}$$

Les deux solutions sont
$$N_1 = \begin{pmatrix} 1 & 1/2 & -1/8 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $N_2 = \begin{pmatrix} -1 & -1/2 & 1/8 \\ 0 & -1 & -1/2 \\ 0 & 0 & -1 \end{pmatrix}$

9. Montrer que l'équation matricielle $M^2=A$ d'inconnue $M\in\mathcal{M}_3(\mathbb{R})$ admet exactement deux solutions que l'on écrira en fonction de P,P^{-1},N_1 et N_2 .

RÉPONSE:

Soit M une matrice carrée d'ordre 3

$$\begin{split} M^2 &= A \Leftrightarrow P^{-1}M^2P = P^{-1}AP \\ &\Leftrightarrow P^{-1}MPP^{-1}MP = T \\ &\Leftrightarrow (P^{-1}MP)^2 = T \\ &\Leftrightarrow P^{-1}MP = N_1 \text{ ou } P^{-1}MP = N_2 \\ &\Leftrightarrow M = PN_1P^{-1} \text{ ou } M = PN_2P^{-1} \end{split}$$
 Résolution précédente

Les deux solutions sont
$$PN_1P^{-1}$$
, PN_2P^{-1} .

Donc on retrouve bien que PN_1P^{-1} est la solution trouvé dans la partie B!

*

10. L'ensemble E des matrices M appartenant à $\mathcal{M}_3(\mathbb{R})$ telles que $M^2=A$ est-il un espace vectoriel?

RÉPONSE:

Ce n'est pas un espace vectoriel car la matrice nulle n'est pas solution de cette équation.

*