Calculs de déterminants.

- 1. Soit (e_1, \dots, e_n) une famille libre de vecteurs d'un espace vectoriel E. Soit le vecteur $x = \sum_{i=1}^{n} \lambda_i e_i$. Donner une condition nécessaire et suffisante sur les λ_i pour que la famille $(e_1 + x, \dots, e_n + x)$ soit libre.
- **2.** Par récurrence, calculer $D_n = \begin{vmatrix} 0 & 1 & \cdots & 1 \\ -1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ -1 & \cdots & -1 & 0 \end{vmatrix}_{(n)}$ et $\Delta_n = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & & & (0) \\ \vdots & & \ddots & \\ 1 & (0) & & 1 \end{vmatrix}_{(n)}$.
- 3. Soient $a_1, a_2, \ldots, a_n, b, c$ des réels avec $b \neq c$. Montrer que le déterminant

$$D(x) = \begin{vmatrix} a_1 + x & c + x & \dots & c + x \\ b + x & a_2 + x & \ddots & \vdots \\ \vdots & \ddots & \ddots & c + x \\ b + x & \dots & b + x & a_n + x \end{vmatrix}_{(n)}$$

est une fonction affine du réel x. En déduire la valeur de D(0).

- **4.** Soit la matrice $A = (a_{i,j})_{0 \le i,j \le n} \in \mathcal{M}_{n+1}(\mathbb{R})$, avec $a_{i,j} = \binom{i+j}{i}$. Calculer $\det(A)$.
- 5. Calculer le déterminant

- **6.** Soient a_1, \dots, a_n des nombres complexes. Soit $B = (b_{i,j}) \in \mathcal{M}_n(\mathbb{C})$, avec $b_{i,j} = a_{\max\{i,j\}}$. Calculer $\det(B)$. En déduire $\Delta_n = \det\left((\max\{i,j\})_{1 \leq i,j \leq n}\right)$ et $\delta_n = \det\left((\min\{i,j\})_{1 \leq i,j \leq n}\right)$.
- 7. Soient $X = (x_1, \dots, x_n)$ et $Y = (y_1, \dots, y_n)$ dans \mathbb{K}^n identifiés à des matrices-colonnes de $\mathcal{M}_{n,1}(\mathbb{K})$. Montrer que $\det(I_n + XY^\top) = 1 + X^\top Y$.
- 8*. Déterminant de Hurwitz
 Soient a, x_1, \dots, x_n des nombres complexes. Calculer $D = \begin{vmatrix} a + x_1 & (a) \\ & \ddots & \\ (a) & a + x_n \end{vmatrix}$.

Exercices théoriques.

9. Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $B \in \mathcal{M}_n(\mathbb{R})$ deux matrices réelles. On suppose que A et B sont semblables sur \mathbb{C} : $\exists P \in \mathrm{GL}_n(\mathbb{C}) \qquad PA = BP$.

En décomposant P en P = Q + iR, où Q et R sont des matrices réelles, et en considérant l'application $f: \lambda \mapsto \det(Q + \lambda R)$, montrer que A et B sont semblables sur \mathbb{R} .

10. Soit
$$A = \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}).$$

- **a.** Calculer AA^{\top} . En déduire $\det(A)$.
- **b*.** Soient n et p deux entiers naturels. On suppose que n et p peuvent chacun s'écrire comme une somme de quatre carrés d'entiers naturels. Montrer que l'entier np est aussi somme de quatre carrés d'entiers naturels.
- **11.a.** Soit $C \in \mathcal{M}_n(\mathbb{R})$, on suppose que

$$\forall M \in \mathcal{M}_n(\mathbb{R}) \quad \det(C+M) = \det(M) .$$

Montrer que C=0. En supposant $C\neq 0$, en s'aidant des colonnes de C, on pourra construire une matrice M inversible telle que C+M ne soit pas inversible.

b. Que dire de deux matrices $A \in \mathcal{M}_n(\mathbb{R}), B \in \mathcal{M}_n(\mathbb{R})$, telles que

$$\forall M \in \mathcal{M}_n(\mathbb{R}) \qquad \det(A+M) = \det(B+M) ?$$

Déterminants de Vandermonde ou assimilés.

- **12.** Soient a_0, a_1, \ldots, a_n des éléments de \mathbb{K} deux à deux distincts. Montrer que la famille de polynômes (P_0, P_1, \ldots, P_n) où, pour tout $i \in [0, n]$, $P_i(X) = (X + a_i)^n$, est une base de $\mathbb{K}_n[X]$. On pourra utiliser un déterminant de Vandermonde.
- 13*. Pour x réel et k entier naturel, on pose $(x)_k = \prod_{i=0}^{k-1} (x-i)$. Ainsi $(x)_0 = 1$ et, si k est non nul, $(x)_k = x(x-1)\cdots(x-k+1)$. Soient x_1, \dots, x_n des nombres réels, montrer que

$$\det\left(\left((x_j)_{i-1}\right)_{1\leq i,j\leq n}\right) = \begin{vmatrix} 1 & 1 & \cdots & 1\\ x_1 & x_2 & \cdots & x_n\\ \vdots & \vdots & & \vdots\\ (x_1)_{n-1} & (x_2)_{n-1} & \cdots & (x_n)_{n-1} \end{vmatrix} = \prod_{1\leq i< j\leq n} (x_j-x_i) = V(x_1,\dots,x_n),$$

où V représente le déterminant de Vandermonde.

Déterminants de matrices par blocs.

- **14.** Soient A, B, C, D des matrices de $\mathcal{M}_n(\mathbb{K})$. On suppose que CD = DC et que D est inversible. On pose $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$. Montrer que $\det M = \det(AD BC)$.
- **15.** Soient $A, B \in \mathcal{M}_n(\mathbb{R})$, soient $M = \begin{pmatrix} A & B \\ B & A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$, $N = \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$.
 - **a.** Montrer que det(M) = det(A+B) det(A-B).
 - **b.** Montrer que $\det(N) \geq 0$.