Définitions et notations

• Une matrice carrée $A=(a_{i,j})\in\mathcal{M}_p(\mathbb{C})$ est dite à diagonale strictement dominante si elle vérifie la condition

$$\forall i \in [1, p] \quad |a_{i,i}| > \sum_{j \neq i} |a_{i,j}|.$$

• Une matrice carrée $A = (a_{i,j}) \in \mathcal{M}_p(\mathbb{R})$ est dite **stochastique** si elle vérifie les deux conditions suivantes :

(i)
$$\forall (i,j) \in [1,p]^2 \quad a_{i,j} \geq 0$$
;

(ii)
$$\forall i \in \llbracket 1,p \rrbracket \qquad \sum_{j=1}^p a_{i,j} = 1 \; .$$

Elle est dite **strictement stochastique** si elle est stochastique et si, de plus, ses coefficients sont tous strictement positifs.

On notera S_p l'ensemble des matrices stochastiques d'ordre p, et S_p^* celui des matrices strictement stochastiques.

• Si $A = (a_{i,j}) \in \mathcal{M}_p(\mathbb{R})$ est une matrice carrée, alors, pour tout $n \in \mathbb{N}$, on notera $a_{i,j}^{(n)}$ le coefficient d'indices (i,j) de la matrice A^n : on a ainsi par exemple $a_{i,j}^{(0)} = \delta_{i,j}$ (symbole de Kronecker), $a_{i,j}^{(1)} = a_{i,j}$.

Si, pour tout couple $(i,j) \in [\![1,p]\!]^2$, la suite $(a_{i,j}^{(n)})_{n \in \mathbb{N}}$ converge vers un réel $b_{i,j}$, on dit alors que la suite de matrices $(A^n)_{n \in \mathbb{N}}$ converge vers la matrice $B \in \mathcal{M}_p(\mathbb{R})$, de coefficients $b_{i,j}$ et on note $\lim_{n \to +\infty} A^n = B$.

• On notera enfin U la matrice-colonne de $\mathcal{M}_{p,1}(\mathbb{R})$ dont tous les coefficients sont égaux à 1.

PARTIE A

A.1. a. Montrer que la condition (ii) ci-dessus équivaut à la condition AU = U.

b. En déduire que les ensembles \mathcal{S}_p et \mathcal{S}_p^* sont stables par produit.

A.2. Soit $A \in \mathcal{M}_p(\mathbb{R})$ une matrice stochastique.

a. Montrer que le nombre 1 est valeur propre de A.

b. Montrer que, pour tout n entier naturel, la matrice A^n est stochastique.

c. On suppose que la suite de matrices (A^n) converge vers une matrice B. Montrer que la matrice B est stochastique et que, pour tout entier naturel n, on a $A^nB = BA^n = B$. Montrer que B est une matrice de projecteur.

A.3. Soit $A \in \mathcal{M}_p(\mathbb{C})$ une matrice à diagonale strictement dominante. Soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{C}^p$

un vecteur-colonne non nul, soit $k \in [1, p]$ tel que $|x_k| = \max_{1 \le i \le p} |x_i|$, soit $Y = AX = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix}$,

montrer que $y_k \neq 0$. En déduire que la matrice A est inversible.

A.4. Soit A une matrice stochastique. Montrer que ses valeurs propres complexes sont toutes de module inférieur ou égal à 1.

PARTIE B

Dans cette partie, on appelle A une matrice carrée d'ordre p, strictement stochastique.

- **B.1.** On pose $M = A I_p$. On note N la matrice carrée d'ordre p-1 obtenue à partir de la matrice M en supprimant la dernière ligne et la dernière colonne. Montrer que N est à diagonale strictement dominante.
- **B.2.** En déduire le sous-espace propre de A pour la valeur propre 1.
- **B.3.** Montrer que les valeurs propres de A autres que 1 ont un module strictement inférieur à 1.

PARTIE C : Étude des matrices stochastiques d'ordre deux

La forme générale d'une matrice stochastique d'ordre deux est $A = \begin{pmatrix} a & 1-a \\ 1-b & b \end{pmatrix}$, avec $(a,b) \in [0,1]^2$.

On suppose que le couple (a, b) est différent de (0, 0) et de (1, 1).

- a. Calculer P(A), où P est le polynôme P = (X 1) (X (a + b 1)).
- **b.** Exprimer le reste de la division euclidienne de X^n par P, pour $n \in \mathbb{N}$.
- **c.** En déduire l'expression de A^n en fonction de a, b et $n \ (n \in \mathbb{N})$.
- **d.** Montrer que la suite (A^n) converge et préciser sa limite.

PARTIE D

Soit $A = (a_{i,j}) \in \mathcal{M}_p(\mathbb{R})$ une matrice strictement stochastique, avec $p \geq 3$. Pour tout $j \in [1, p]$ et tout entier naturel non nul n, on pose

$$\alpha_j^{(n)} = \min_{1 \le i \le p} a_{i,j}^{(n)} \qquad ; \qquad \beta_j^{(n)} = \max_{1 \le i \le p} a_{i,j}^{(n)} \qquad ; \qquad \gamma_j^{(n)} = \beta_j^{(n)} - \alpha_j^{(n)} \; .$$

On pose par ailleurs $\varepsilon = \min_{(i,j) \in [1,p]^2} a_{i,j}$.

- **D.1.** Montrer que $\varepsilon \in \left]0, \frac{1}{2}\right[$.
- **D.2.** Exprimer $a_{i,j}^{(n+1)}$ en fonction de $a_{i,1}, a_{i,2}, \dots, a_{i,p}$ et des coefficients de A^n .
- **D.3.** Montrer que, pour tout couple $(i,j) \in [1,p]^2$ et tout entier naturel non nul n, on a

$$a_{i,j}^{(n+1)} - \alpha_j^{(n)} \ge \varepsilon \, \gamma_j^{(n)}$$
 et $\beta_j^{(n)} - a_{i,j}^{(n+1)} \ge \varepsilon \, \gamma_j^{(n)}$.

D.4. En déduire que, pour tout entier $j \in [1, p]$ et tout entier naturel non nul n, on a

$$\alpha_j^{(n)} \leq \alpha_j^{(n+1)} \leq \beta_j^{(n+1)} \leq \beta_j^{(n)} \qquad \text{et} \qquad \gamma_j^{(n+1)} \leq (1-2\varepsilon) \, \gamma_j^{(n)} \; .$$

- **D.5.** En déduire que la suite (A^n) converge, on notera B sa limite.
- **D.6.** Montrer que les lignes de la matrice B sont toutes égales.
- **D.7.** Soit $L \in \mathcal{M}_{1,p}(\mathbb{R})$ l'un quelconque des vecteurs-lignes de la matrice B. Montrer que le vecteur $X = L^{\top} \in \mathcal{M}_{p,1}(\mathbb{R})$ est vecteur propre de la matrice A^{\top} pour la valeur propre 1.

D.8. Soit
$$A = \begin{pmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{5} & \frac{1}{5} & \frac{3}{5} \end{pmatrix}$$
. En utilisant les questions **D.6.** et **D.7.**, déterminer la matrice $B = \lim_{n \to +\infty} A^n$.