Si E un \mathbb{K} -espace vectoriel et si f est un endomorphisme de E, on posera

$$\mathcal{R}(f) = \left\{ h \in \mathcal{L}(E) \mid h^2 = f \right\}.$$

L'objectif du problème est d'étudier des conditions nécessaires ou suffisantes à l'existence de "racines carrées" d'un endomorphisme f, et de décrire dans certains cas l'ensemble $\mathcal{R}(f)$.

PARTIE A.

On note ici f l'endomorphisme de \mathbb{R}^3 canoniquement représenté par la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ 4 & -2 & -6 \\ -2 & 2 & 4 \end{pmatrix}$.

- **A.2.** Déterminer une base (v_1, v_2, v_3) de \mathbb{R}^3 formée de vecteurs propres de f et donner la matrice D de f dans cette nouvelle base.
- **A.3.** Soit P la matrice de passage de la base canonique à la base (v_1, v_2, v_3) . Soit m un entier naturel non nul. Calculer P^{-1} , puis déterminer la matrice de f^m dans la base canonique.
- **A.4.** Déterminer toutes les matrices de $\mathcal{M}_3(\mathbb{R})$ qui commutent avec la matrice D trouvée à la question **A.2.**
- **A.5.** En déduire toutes les matrices $H \in \mathcal{M}_3(\mathbb{R})$ vérifiant $H^2 = D$, puis déterminer tous les endomorphismes h de \mathbb{R}^3 vérifiant $h^2 = f$ en donnant leur matrice dans la base canonique.

PARTIE B.

Soient f et u les endomorphismes de $E = \mathbb{R}^3$ dont les matrices respectives A et J dans la base canonique sont données par

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \qquad ; \qquad J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} .$$

- **B.1.** Calculer J^m pour m entier naturel non nul.
- **B.2.** En déduire la relation $f^m = \mathrm{id}_E + \frac{4^m 1}{3}u$ pour $m \in \mathbb{N}^*$. Cette relation est-elle encore vraie pour m = 0?
- **B.3.** Montrer que f admet deux valeurs propres distinctes λ et μ avec $\lambda < \mu$.
- **B.4.** Montrer qu'il existe un unique couple (p,q) d'endomorphismes de \mathbb{R}^3 tel que, pour tout entier naturel m, on ait $f^m = \lambda^m p + \mu^m q$, et montrer que ces endomorphismes p et q sont linéairement indépendants.
- **B.5.** Après avoir calculé p^2 , q^2 , $p \circ q$ et $q \circ p$, trouver tous les endomorphismes h, combinaisons linéaires de p et q, qui vérifient $h^2 = f$.
- **B.6.** Montrer que f est diagonalisable, expliciter une base de vecteurs propres de f. Écrire la matrice D de f, puis les matrices de p et de q, dans cette nouvelle base.
- **B.7.** Déterminer une matrice K de $\mathcal{M}_2(\mathbb{R})$, non diagonale, telle que $K^2 = I_2$. En déduire une matrice Y de $\mathcal{M}_3(\mathbb{R})$, non diagonale, telle que $Y^2 = D$.
- **B.8.** L'ensemble $\mathcal{R}(f)$ est-il inclus dans le plan Vect(p,q)?
- **B.9.** Montrer que tout endomorphisme h appartenant à $\mathcal{R}(f)$ est diagonalisable.

PARTIE C.

Soit E un \mathbb{K} -espace vectoriel de dimension n.

Soit f un endomorphisme de E, nilpotent, d'indice de nilpotence $p \ge 2$ $(f^{p-1} \ne 0$ et $f^p = 0)$.

- **C.1.** Montrer qu'il existe un vecteur x de E tel que la famille $(x, f(x), \dots, f^{p-1}(x))$ est libre. En déduire que $f^n = 0$.
- **C.2.** Montrer que, si $\mathcal{R}(f) \neq \emptyset$, alors $2p 1 \leq n$.

C.3. Expliciter les réels a_0, \dots, a_{n-1} tels que $\sqrt{1+x} = \sum_{k=0}^{n-1} a_k x^k + O(x^n)$ au voisinage de zéro.

Pour la suite, on introduit le polynôme $P_n = \sum_{k=0}^{n-1} a_k X^k \in \mathbb{R}[X].$

- **C.4.** Montrer qu'il existe une fonction η , bornée au voisinage de zéro, telle que l'on ait $P_n(x)^2 x 1 = x^n \eta(x)$. En déduire que le polynôme $P_n^2 X 1$ est multiple de X^n .
- **C.5.** Montrer alors que $\mathcal{R}(f + \mathrm{id}_E) \neq \emptyset$. Plus généralement, montrer que pour tout α réel, on a $\mathcal{R}(\alpha f + \mathrm{id}_E) \neq \emptyset$, puis que, pour tout β réel strictement positif, on a $\mathcal{R}(f + \beta \mathrm{id}_E) \neq \emptyset$.

PARTIE D.

Soit E un \mathbb{R} -espace vectoriel de dimension n. Soit f un endomorphisme de E, trigonalisable, et admettant une seule valeur propre λ .

- **D.1.** Montrer que $(f \lambda id_E)^n = 0$.
- **D.2.** Si on suppose λ strictement positif, montrer que $\mathcal{R}(f) \neq \emptyset$.

PARTIE E.

On se fixe un entier naturel p supérieur ou égal à 2. Pour toute matrice B de $\mathrm{GL}_n(\mathbb{C})$, on appelle **racine** p-ième de B toute matrice A de $\mathrm{GL}_n(\mathbb{C})$ vérifiant $A^p = B$. Le but de cette partie est de prouver l'existence d'une telle matrice. On note $\mathcal{T}_n(\mathbb{C})$ l'ensemble des matrices triangulaires supérieures d'ordre n.

E.1. Soient $A \in \mathcal{M}_n(\mathbb{C})$, $X \in \mathcal{M}_{n,1}(\mathbb{C})$ et $\lambda \in \mathbb{C}$. Démontrer que, pour tout $k \in \mathbb{N}^*$, on a

$$\begin{pmatrix} A & X \\ 0_{1,n} & \lambda \end{pmatrix}^k = \begin{pmatrix} A^k & X_k \\ 0_{1,n} & \lambda^k \end{pmatrix} , \quad \text{où} \quad X_k = \left(\sum_{j=0}^{k-1} \lambda^{k-1-j} A^j\right) X .$$

Dans toute la fin du problème, on notera $\mathcal{V}_p = \mathcal{U}_p \setminus \{1\} = \left\{e^{\frac{2ik\pi}{p}} ; 1 \leq k \leq p-1\right\}$ l'ensemble des racines p-ièmes de l'unité différentes de 1.

- **E.2.** Soient a et λ des nombres complexes non nuls. On suppose que $\frac{a}{\lambda} \notin \mathcal{V}_p$, ce qui signifie que, soit $a = \lambda$, soit $\frac{a^p}{\lambda^p} \neq 1$. Montrer que le nombre complexe $\sum_{i=0}^{p-1} \lambda^{p-1-j} a^j$ est non nul.
- **E.3.** Soit $A = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{C})$ triangulaire supérieure et inversible. Soit λ un nombre complexe non nul. On suppose que, pour tout $i \in [1, n]$, $\frac{a_{i,i}}{\lambda} \notin \mathcal{V}_p$. Démontrer que la matrice $\sum_{j=0}^{p-1} \lambda^{p-1-j} A^j$ est inversible.
- **E.4.** Montrer que toute matrice triangulaire supérieure et inversible admet au moins une racine p-ième triangulaire supérieure. On pourra montrer par récurrence sur $n \ge 1$ la propriété:

$$\forall B \in \mathcal{T}_n(\mathbb{C}) \cap \operatorname{GL}_n(\mathbb{C}) \quad \exists A \in \mathcal{T}_n(\mathbb{C}) \qquad \begin{cases} A^p = B \\ \forall (i,j) \in \llbracket 1,n \rrbracket^2 \quad \frac{a_{i,i}}{a_{j,j}} \not\in \mathcal{V}_p \end{cases}.$$

E.5. En déduire que toute matrice inversible de $\mathcal{M}_n(\mathbb{C})$ admet au moins une racine p-ième.