EXERCICE

L'espace vectoriel \mathbb{C}^n est muni de la norme $\|\cdot\|$ définie par

$$\forall x = (x_1, \dots, x_n) \in \mathbb{C}^n \qquad ||x|| = \max_{1 \le k \le n} |x_k|.$$

Soit φ un endomorphisme de \mathbb{C}^n . On dira que φ est un **endomorphisme borné** si, pour tout vecteur x de \mathbb{C}^n , la suite $\left(\left\|\varphi^p(x)\right\|\right)_{p\in\mathbb{N}}$ est bornée, avec $\varphi^p=\varphi\circ\cdots\circ\varphi$ (p facteurs).

On note id l'application identique de \mathbb{C}^n .

- **1.a.** Montrer que, si φ est un endomorphisme borné de \mathbb{C}^n , alors toutes ses valeurs propres sont de module inférieur ou égal à 1.
 - **b.** À l'aide d'un endomorphisme simple de \mathbb{C}^2 (on pourra raisonner matriciellement), montrer que la réciproque du **a.** est fausse.
 - c. Montrer que la réciproque du a. est vraie pour un endomorphisme diagonalisable.
- **2.** Soit φ un endomorphisme borné de \mathbb{C}^n , soit λ une valeur propre de φ , de module 1. On considère un vecteur $x \in \text{Ker}(\varphi \lambda \text{id})^2$, et on pose $y = \varphi(x) \lambda x$.
 - a. Exprimer $\varphi^p(x)$ sous forme d'une combinaison linéaire de x et de y dont les coefficients dépendent de p et de λ .
 - **b.** En déduire que le vecteur x appartient à $Ker(\varphi \lambda id)$.
 - **c.** Montrer que $\mathbb{C}^n = \text{Ker}(\varphi \lambda \text{ id}) \oplus \text{Im}(\varphi \lambda \text{ id})$.
- 3. Soient p, q, r trois réels strictement positifs, de somme 1. Soit $M = \begin{pmatrix} p & q & r \\ q & p & r \\ q & r & p \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}),$ soit φ l'endomorphisme de \mathbb{C}^3 canoniquement associé à M.

 Montrer que $\mathbb{C}^3 = \text{Ker}(\varphi \text{id}) \oplus \text{Im}(\varphi \text{id}).$

PROBLÈME

PARTIE A.

Dans cette partie, on note f l'application de \mathbb{R} vers \mathbb{R} définie par

$$\forall x \in \mathbb{R} \qquad f(x) = x e^x .$$

1. Justifier que f réalise une bijection de l'intervalle $[-1, +\infty[$ sur l'intervalle $[-e^{-1}, +\infty[$.

Dans la suite du sujet, la réciproque de cette bijection est notée U. On rappelle que ceci signifie que, pour tout réel x tel que $x \ge -e^{-1}$, le réel U(x) est l'unique solution de l'équation f(t) = x, d'inconnue $t \in [-1, +\infty[$.

L'objectif du problème est d'obtenir un développement en série entière de la fonction U sur un certain intervalle]-R,R[avec R>0.

- **2.** Justifier que U est continue sur $[-e^{-1}, +\infty[$ et de classe \mathcal{C}^{∞} sur $]-e^{-1}, +\infty[$.
- **3.** Expliciter U(0) et U'(0).
- **4.** Déterminer un équivalent de U(x) lorsque $x \to 0$, et un équivalent de U(x) lorsque $x \to +\infty$.
- 5. Tracer, sur le même dessin, les courbes C_f et C_U représentatives des fonctions f et U. Préciser les tangentes aux deux courbes au point d'abscisse 0, ainsi que la tangente à C_U au point d'abscisse $-e^{-1}$.
- **6.** Pour quels réels α la fonction $x \mapsto x^{\alpha} U(x)$ est-elle intégrable sur [0,1]?
- 7. Pour quels réels α la fonction $x \mapsto x^{\alpha} U(x)$ est-elle intégrable sur $[1, +\infty[$?

PARTIE B.

On considère dans cette partie un entier naturel n et un nombre complexe a. On définit une famille de polynômes (A_0, A_1, \dots, A_n) en posant

$$A_0 = 1$$
 et $\forall k \in [1, n]$ $A_k = \frac{1}{k!} X(X - ka)^{k-1}$.

- 8. Montrer que la famille $\mathcal{A}=(A_0,A_1,\cdots,A_n)$ est une base du \mathbb{C} -espace vectoriel $\mathbb{C}_n[X]$.
- **9.** Pour tout $k \in [1, n]$, prouver la relation $A'_k(X) = A_{k-1}(X a)$.
- **10.** Calculer $A_k^{(j)}(ja)$ pour $(j,k) \in [0,n]^2$. Distinguer suivant que j < k, j = k ou j > k.
- 11. Soit $P \in \mathbb{C}_n[X]$. Montrer que ses coordonnées dans la base \mathcal{A} sont les $P^{(j)}(ja), 0 \leq j \leq n$.
- 12. En déduire l'identité

$$\forall (a, x, y) \in \mathbb{C}^3 \qquad (x+y)^n = y^n + \sum_{k=1}^n \binom{n}{k} \ x \ (x-ka)^{k-1} \ (y+ka)^{n-k} \ .$$

13. Établir la relation, pour $n \in \mathbb{N}^*$,

$$\forall (a,y) \in \mathbb{C}^2$$
 $ny^{n-1} = \sum_{k=1}^n \binom{n}{k} (-ka)^{k-1} (y+ka)^{n-k}.$

PARTIE C.

Pour tout $n \in \mathbb{N}^*$, on pose $a_n = \frac{(-n)^{n-1}}{n!}$. On pose $S(x) = \sum_{n=1}^{+\infty} a_n x^n$ lorsque c'est possible.

- 14. Déterminer le rayon de convergence R de la série entière $\sum_{n\geq 1} a_n x^n$.
- **15.** Justifier que la fonction S est de classe \mathcal{C}^{∞} sur]-R,R[et, pour tout entier naturel n, exprimer $S^{(n)}(0)$ en fonction de n.
- **16.** Montrer que la fonction S est définie et continue sur [-R, R].
- 17. Montrer que

$$\forall x \in]-R, R[\qquad x (1+S(x)) S'(x) = S(x).$$

On pourra utiliser le résultat de la question 13.

Pour $x \in]-R, R[$, on pose $h(x) = S(x) e^{S(x)}$.

- 18. Montrer que h est solution sur]-R,R[] de l'équation différentielle (E): xy'-y=0.
- **19.** Résoudre l'équation différentielle (**E**) sur]0, R[, sur]-R, 0[, puis sur]-R, R[.
- **20.** En déduire que $\forall x \in]-R,R[\quad S(x)=U(x),$ la fonction U ayant été introduite dans la **PARTIE A.**

On a ainsi obtenu un développement en série entière de la fonction U sur]-R,R[.

21. Prouver la convergence et calculer la somme de la série numérique $\sum_{n>1} \frac{n^{n-1} e^{-n}}{n!}$.