CORRIGÉ du D.M. de MATHÉMATIQUES numéro 6 PSI2 2024-2025

EXERCICE

1.a. Posons z = x + iy avec x et y réels. Alors

$$|z-\alpha|^2=(x-\alpha)^2+y^2\geq y^2=\left|\operatorname{Im}(z)\right|^2,$$
donc $|z-\alpha|\geq \left|\operatorname{Im}(z)\right|.$

b. Posons $d = \deg(P)$, et $P = \prod_{k=1}^{d} (X - a_k)$, où les **réels** a_k sont les racines (comptées avec leur multiplicité) de P. Alors

$$\forall z \in \mathbb{C}$$
 $|P(z)| = \left| \prod_{k=1}^{d} (z - a_k) \right| = \prod_{k=1}^{d} |z - a_k| \ge \prod_{k=1}^{d} |\operatorname{Im}(z)| = |\operatorname{Im}(z)|^d$

en utilisant le ${\bf a.}$ et le fait que les racines de P sont réelles.

- c. Les racines de P sont les racines cubiques du nombre $-1=e^{i\pi}$, ce sont donc les nombres $i\left(\frac{\pi}{3}+k\frac{2\pi}{3}\right)$, avec $k\in \llbracket 0,2 \rrbracket$. On peut noter que $a_0=-j^2,\ a_1=-1$ et $a_2=-j$ en notant $j=e^{i\frac{2\pi}{3}}$. Ainsi, $P=X^3+1=(X+1)(X+j)(X+j^2)$. Avec $z_0=a_0=-j^2$ par exemple, on a $P(z_0)=0$ alors que $\mathrm{Im}(z_0)=\frac{1}{2}\neq 0$, donc $|P(z_0)|<|\mathrm{Im}(z_0)|^3$.
- **d.** Si $z \in \mathbb{C} \setminus \mathbb{R}$, alors $|P(z)| \ge |\operatorname{Im}(z)|^{\operatorname{deg}(P)} > 0$, en particulier $P(z) \ne 0$. Les racines de P sont donc réelles. Comme P est scindé sur \mathbb{C} par le théorème de d'Alembert-Gauss, avec toutes ses racines réelles par ailleurs, il est finalement scindé sur \mathbb{R} .
- e. On a démontré le résultat suivant:

Un polynôme unitaire de $\mathbb{R}[X]$ est scindé sur \mathbb{R} si et seulement si on a

$$\forall z \in \mathbb{C} \qquad |P(z)| \ge |\operatorname{Im}(z)|^{\operatorname{deg}(P)}$$
.

- **2.a.** D'après le cours, les polynômes P_n et P sont unitaires (coefficient dominant égal à 1) et de degré q.
 - **b.** On sait que l'application det : $\begin{cases} \mathcal{M}_q(\mathbb{C}) \to \mathbb{C} \\ M \mapsto \det(M) \end{cases}$ est continue car "polynomiale". En conséquence, si une suite (M_n) de matrices de $\mathcal{M}_q(\mathbb{C})$ converge vers une matrice M, alors $\lim_{n \to +\infty} \det(M_n) = \det(M)$. Or, $P_n(z) = \det(z \ I_q A_n)$ et, par opérations sur les suites convergentes, on a $z \ I_q A_n \xrightarrow[n \to +\infty]{} z \ I_q A$. Par continuité du déterminant, on déduit que

$$P_n(z) = \det(z I_q - A_n) \underset{n \to +\infty}{\longrightarrow} \det(z I_q - A) = P(z)$$
.

- c. Les matrices A_n sont trigonalisables (sur \mathbb{R}), donc leurs polynômes caractéristiques P_n sont scindés sur \mathbb{R} . De la question $\mathbf{1}$, on déduit que, pour tout $z \in \mathbb{C}$, et pour tout $n \in \mathbb{N}$, on a $|P_n(z)| \geq |\operatorname{Im}(z)|^q$. Par passage à la limite, en utilisant \mathbf{b} ci-dessus, on obtient, pour tout $z \in \mathbb{C}$, l'inégalité $|P(z)| \geq |\operatorname{Im}(z)|^q$. De la question $\mathbf{1}$ encore, on déduit que le polynôme caractéristique $P = \chi_A$ est scindé sur \mathbb{R} , donc la matrice A est trigonalisable sur \mathbb{R} .
- d. On vient de montrer que l'ensemble \mathcal{T}_q des matrices trigonalisables est "stable par passage à la limite", i.e. toute suite convergente de matrices de \mathcal{T}_q a sa limite dans \mathcal{T}_q , autrement dit l'ensemble \mathcal{T}_q est fermé dans l'espace vectoriel $\mathcal{M}_q(\mathbb{R})$.

- **3.a.** On a $A = \lim_{n \to +\infty} A_n = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. En effet, de $\left| \frac{\sin(n)}{n} \right| \leq \frac{1}{n}$, on déduit que $\lim_{n \to +\infty} \frac{\sin(n)}{n} = 0$.
 - **b.** Pour tout n entier naturel non nul, la matrice A_n est diagonalisable, car elle a deux valeurs propres distinctes, $1 \frac{1}{n}$ et $1 + \frac{1}{n}$. La matrice A a pour seule valeur propre 1, et elle ne coïncide pas avec la matrice-identité I_2 , elle n'est donc pas diagonalisable.
 - c. On vient de constater que l'ensemble \mathcal{D}_q des matrices diagonalisables n'est pas "stable par passage à la limite", donc n'est pas fermé dans $\mathcal{M}_q(\mathbb{R})$.
- **4.a.** Trivialement, $\mathcal{D}_q \subset \mathcal{T}_q$.
 - b. Soit $A \in \overline{\mathcal{D}_q}$, cela signifie (caractérisation séquentielle des points adhérents) que A est limite d'une suite (A_k) de matrices diagonalisables. Les matrices A_k sont alors aussi trigonalisables, i.e. appartiennent à \mathcal{T}_q . Comme \mathcal{T}_q est fermé (question **2.d.**), on déduit $A = \lim_{k \to +\infty} A_k \in \mathcal{T}_q$. On a donc prouvé l'inclusion $\overline{\mathcal{D}_q} \subset \mathcal{T}_q$.
 - c. Notons $t_{i,i}$ $(1 \le i \le q)$ les coefficients diagonaux de T. Pour tout n entier naturel non nul, la matrice T_n est triangulaire supérieure, et ses coefficients diagonaux (qui sont alors ses valeurs propres) sont les $t_{i,i} + \frac{i}{n}$, avec $1 \le i \le q$. Or, pour n suffisamment grand, ces nombres sont deux à deux distincts: en effet, une égalité de la forme $t_{i,i} + \frac{i}{n} = t_{j,j} + \frac{j}{n}$ avec $1 \le i < j \le q$ ne peut se produire que pour un nombre fini (au plus $\frac{q(q-1)}{2}$) de valeurs de n. Pour n assez grand, la matrice T_n est donc diagonalisable puisqu'elle admet n valeurs propres distinctes. Notons enfin que $\lim_{n \to +\infty} T_n = T$.
 - d. On a prouvé l'inclusion directe. Montrons $\mathcal{T}_q \subset \overline{\mathcal{D}_q}$. Soit donc $A \in \mathcal{T}_q$, la matrice A est trigonalisable, i.e. il existe $P \in \mathrm{GL}_q(\mathbb{R})$, et $T \in \mathcal{M}_q(\mathbb{R})$ triangulaire supérieure, telles que $A = PTP^{-1}$. On a montré en \mathbf{c} . qu'il existe une suite (T_n) de matrices diagonalisables telle que $\lim_{n \to +\infty} T_n = T$. Les matrices T_n construites à la question précédente sont en effet diagonalisables à partir d'un certain rang N, il suffit de considérer alors la suite extraite obtenue en ne conservant que les termes de rang supérieur à N. Par continuité du produit matriciel, on a alors $\lim_{n \to +\infty} PT_nP^{-1} = PTP^{-1} = A$. Comme PT_nP^{-1} est diagonalisable, on a construit une suite de matrices de \mathcal{D}_q qui converge vers A, donc $A \in \overline{\mathcal{D}_q}$. L'inclusion réciproque est prouvée. On conclut que $\overline{\mathcal{D}_q} = \mathcal{T}_q$.

PROBLÈME

PARTIE A. Étude d'exemples.

1. Les solutions de (E1) sont les fonctions y de la forme $y(x) = a \cos(x) + b \sin(x)$.

Si (a, b) = (0, 0), alors y est la fonction nulle.

Si $(a,b) \neq (0,0)$, alors en posant $A = \sqrt{a^2 + b^2}$ et en introduisant le réel θ déterminé (modulo 2π) par les relations $\begin{cases} \cos\theta = \frac{b}{A} \\ \sin\theta = \frac{a}{A} \end{cases}$ (un tel réel θ existe car $\left(\frac{b}{A}\right)^2 + \left(\frac{a}{A}\right)^2 = 1$),

on a $y(x) = A(\sin\theta\cos x + \cos\theta\sin x) = A\sin(x+\theta)$, et cette fonction s'annule en tous les points de la forme $n\pi - \theta$ avec n entier relatif, elle admet donc une infinité de zéros.

2.a. On pose $y(x) = \frac{1}{x}z(x)$, d'où $y'(x) = \frac{1}{x}z'(x) - \frac{1}{x^2}z(x)$ et $y'' = \frac{1}{x}z'' - \frac{2}{x^2}z' + \frac{2}{x^3}z$. On réinjecte dans l'équation **(E2)** qui devient alors, après simplifications,

(E'2):
$$x z'' - 2z' + x z = 0$$
.

- b. Vérifications laissées au lecteur!
- c. Sur \mathbb{R}_+^* , l'équation (E'2) peut se mettre sous forme normale $z'' = \frac{2}{x}z' z$, les "coefficients" $x\mapsto \frac{2}{x}$ et $x\mapsto -1$ étant des fonctions continues sur \mathbb{R}_+^* . Le théorème de Cauchy linéaire s'applique alors et permet d'affirmer que l'ensemble $\mathcal{S}_{\mathbb{R}_+^*}$ des solutions de $(\mathbf{E}'\mathbf{2})$ sur \mathbb{R}_+^* est un plan vectoriel. On en connaît deux éléments linéairement indépendants, qui sont les fonctions z_1 et z_2 , visiblement non proportionnelles. Donc $\mathcal{S}_{\mathbb{R}^*_{\perp}} = \text{Vect}(z_1, z_2)$. Les solutions

$$y = a\left(x \sin x + \cos x\right) + b\left(x \cos x - \sin x\right), \qquad (a, b) \in \mathbb{R}^2$$

d. Les solutions de (E'2) sur \mathbb{R}_{-}^{*} s'expriment de la même façon que sur \mathbb{R}_{+}^{*} car, là aussi, on peut mettre l'équation sous forme normale et le théorème de Cauchy s'applique.

Si z est une solution de (E'2) sur \mathbb{R} , alors z est deux fois dérivable sur \mathbb{R} , z est solution sur \mathbb{R}_{-}^{*} et sur \mathbb{R}_{+}^{*} , et on observe aussi la condition z'(0)=0. Il existe donc quatre constantes réelles a, b, c, d telles que

$$\begin{cases} \forall x \in \mathbb{R}_{-}^{*} & z(x) = a (x \sin x + \cos x) + b (x \cos x - \sin x) \\ \forall x \in \mathbb{R}_{+}^{*} & z(x) = c (x \sin x + \cos x) + d (x \cos x - \sin x) \end{cases}$$

La continuité de z en 0 impose a=c.

de (\mathbf{E} '2) sur \mathbb{R}_+^* sont donc les fonctions

On a alors $z'(x) = a x \cos x - b x \sin x$ sur \mathbb{R}_{+}^{*} , expression qui tend toujours vers 0 lorsque $x \to 0^-$, et un calcul analogue sur \mathbb{R}_+^* ; la condition de raccordement \mathcal{C}^1 à l'origine avec z'(0) = 0 n'impose donc rien sur les constantes a, b, c, d.

Enfin, $z''(x) = a(\cos x - x \sin x) - b(\sin x + x \cos x)$ sur \mathbb{R}_{-}^* et un calcul analogue sur \mathbb{R}_{+}^* ; la condition de raccordement deux fois dérivable à l'origine impose donc a=c, condition déjà obtenue comme nécessaire pour que le raccordement soit continu.

Il nous reste donc trois "degrés de liberté". L'ensemble $\mathcal{S}_{\mathbb{R}}$ des solutions de $(\mathbf{E}'\mathbf{2})$ sur \mathbb{R} est un sous-espace vectoriel de $\mathcal{C}^2(\mathbb{R},\mathbb{R})$ car c'est l'ensemble des solutions d'une équation différentielle linéaire homogène, il est de dimension 3, il est constitué des fonctions z de la forme

$$\begin{cases} \forall x \in \mathbb{R}_{-} & z(x) = a \left(x \sin x + \cos x \right) + b \left(x \cos x - \sin x \right) \\ \forall x \in \mathbb{R}_{+} & z(x) = a \left(x \sin x + \cos x \right) + d \left(x \cos x - \sin x \right) \end{cases}, \quad (a, b, d) \in \mathbb{R}^{3}.$$

Le lecteur vérifiera réciproquement que les fonctions décrites ci-dessus sont bien de classe \mathcal{C}^2 sur \mathbb{R} en considérant le raccordement en 0.

- e. On a $z_1(n\pi) = \cos(n\pi) = (-1)^n$. Pour tout $n \in \mathbb{N}^*$, les nombres $z_1(n\pi)$ et $z_1((n+1)\pi)$ sont de signes opposés, donc, par le théorème des valeurs intermédiaires (la fonction z_1 étant évidemment continue), elle admet au moins un zéro dans l'intervalle $]n\pi, (n+1)\pi[$. Elle admet donc une infinité de zéros dans \mathbb{R}_+^* .
- **f.** Des questions **a.** et **c.** ci-dessus, on déduit que les solutions sur \mathbb{R}_+^* de l'équation (**E2**) sont les fonctions

$$y = a\left(\sin(x) + \frac{\cos(x)}{x}\right) + b\left(\cos(x) - \frac{\sin(x)}{x}\right), \qquad (a,b) \in \mathbb{R}^2.$$

On note alors que $y(n\pi) = (-1)^n \left(\frac{a}{n\pi} + b\right)$ pour tout $n \in \mathbb{N}^*$.

- si (a, b) = (0, 0), alors y est la fonction nulle;
- si b=0 et $a\neq 0$, alors $y(n\pi)$ est du signe de $(-1)^n a$, donc la fonction y change de signe entre les points $n\pi$ et $(n+1)\pi$, et s'annule donc une infinité de fois ;
- si $b \neq 0$, alors pour n assez grand, $y(n\pi) = a \frac{(-1)^n}{n\pi} + b (-1)^n$ est du signe de $(-1)^n b$, et on conclut de la même façon.

PARTIE B. Zéros des solutions d'une équation différentielle.

3.a. On transforme d'abord l'expression de g(x):

$$g(x) = \int_{a}^{x} q(t) f(t) (\sin(t) \cos(x) - \cos(t) \sin(x)) dt$$

= $\cos(x) \int_{a}^{x} q(t) f(t) \sin(t) dt - \sin(x) \int_{a}^{x} q(t) f(t) \cos(t) dt$.

D'après le théorème fondamental, comme f et q sont continues, les fonctions $x \mapsto \int_a^x q(t)f(t)\sin(t)\mathrm{d}t$

et
$$x \mapsto \int_a^x q(t) f(t) \cos(t) dt$$
 sont de classe \mathcal{C}^1 , donc g est de classe \mathcal{C}^1 sur \mathbb{R}_+ , et $g'(x) = -\sin(x) \int_a^x q(t) f(t) \sin(t) dt - \cos(x) \int_a^x q(t) f(t) \cos(t) dt$

après simplification des termes $\pm \cos(x) \sin(x) q(x) f(x)$.

Avec les mêmes arguments, on peut affirmer maintenant que g' est de classe \mathcal{C}^1 , donc g est de classe \mathcal{C}^2 sur \mathbb{R}_+ , avec

$$g''(x) = -\cos(x) \int_a^x q(t) f(t) \sin(t) dt + \sin(x) \int_a^x q(t) f(t) \cos(t) dt - q(x) f(x) \left(\sin^2(x) + \cos^2(x)\right)$$
$$= -g(x) - q(x) f(x).$$

- On a donc g'' + g = -q f = f'' + f puisque f est solution de (E).
- **b.** La fonction f g est donc solution de l'équation différentielle y'' + y = 0, il existe donc deux constantes réelles C_1 et C_2 telles que

$$\forall x \in \mathbb{R}_+ \qquad f(x) - g(x) = C_1 \cos(x) + C_2 \sin(x) .$$

- 4. Comme q est supposée intégrable sur $\mathbb{R}_+ = [0, +\infty[$, l'intégrale généralisée $\int_0^{+\infty} |q(t)| \, \mathrm{d}t$ est convergente, soit Q la valeur de cette intégrale. On a, par définition, $\lim_{x \to +\infty} \int_0^x |q(t)| \, \mathrm{d}t = Q$. De la définition de la limite, en choisissant $\varepsilon = \frac{1}{2}$, on déduit qu'il existe $A \in \mathbb{R}_+$ tel que, pour tout $x \geq A$, on ait $\left| Q \int_0^x |q(t)| \, \mathrm{d}t \right| \leq \frac{1}{2}$, soit $\int_x^{+\infty} |q(t)| \, \mathrm{d}t \leq \frac{1}{2}$ par la relation de Chasles. Pour dire les choses plus rapidement, le "reste d'ordre x" d'une intégrale généralisée convergente sur $[0, +\infty[$ tend vers 0 lorsque $x \to +\infty$, de la même façon que le reste d'ordre n d'une série convergente tend vers 0 lorsque $n \to +\infty$.
- **5.a.** La fonction |f| est continue sur le segment [a, b], donc y est bornée et atteint ses bornes.
 - **b.** Majorons:

$$\left| \int_a^x q(t) f(t) \sin(t-x) dt \right| \le M_b \int_a^x |q(t)| dt \le M_b \int_a^{+\infty} |q(t)| dt \le \frac{1}{2} M_b.$$

De l'expression de f obtenue en **3.b.**, pour $x \in [a, b]$, on déduit $|f(x)| \le |C_1| + |C_2| + \frac{1}{2}M_b$, puis en prenant le max sur [a, b], $M_b \le |C_1| + |C_2| + \frac{1}{2}M_b$, donc $M_b \le 2(|C_1| + |C_2|)$.

- c. On a prouvé que $\forall b \in]a, +\infty[$ $\forall x \in [a,b]$ $|f(x)| \leq 2(|C_1|+|C_2|)$, on en déduit que l'inégalité $|f(x)| \leq 2(|C_1|+|C_2|)$ est satisfaite sur la demi-droite $[a,+\infty[$, donc f est bornée sur $[a,+\infty[$. Par ailleurs, f est continue, donc elle est bornée sur le segment [0,a]. Finalement, f est bornée sur $\mathbb{R}_+ = [0,a] \cup [a,+\infty[$.
- **6.** Posons maintenant $M = \|f\|_{\infty,\mathbb{R}_+} = \sup_{x \in \mathbb{R}_+} |f(x)|$. On a $|p_x(t)| \leq M |q(t)|$ sur \mathbb{R}_+ , la fonction q étant supposée intégrable sur \mathbb{R}_+ . Par comparaison, la fonction p_x est intégrable sur \mathbb{R}_+ .
- 7.a. Sachant que p_x est intégrable sur $[0, +\infty[$, on peut appliquer la relation de Chasles pour écrire

$$f(x) = C_1 \cos(x) + C_2 \sin(x) + \int_a^{+\infty} q(t) f(t) \sin(t-x) dt - \int_x^{+\infty} q(t) f(t) \sin(t-x) dt.$$

Or,
$$\int_{a}^{+\infty} q(t) f(t) \sin(t-x) dt = I \cos(x) + J \sin(x)$$
, en posant $I = \int_{a}^{+\infty} q(t) f(t) \sin(t) dt$
et $J = -\int_{a}^{+\infty} q(t) f(t) \cos(t) dt$. La convergence de ces deux nouvelles intégrales se justifie

comme en question 6. En posant enfin $C_3 = C_1 + I$ et $C_4 = C_2 + J$, on obtient bien

$$f(x) = C_3 \cos(x) + C_4 \sin(x) - \int_x^{+\infty} q(t) f(t) \sin(t - x) dt$$
.

- **b.** On a $|f(x) C_3 \cos(x) C_4 \sin(x)| = \left| \int_x^{+\infty} q(t) f(t) \sin(t-x) dt \right| \le M \int_x^{+\infty} |q(t)| dt \underset{x \to +\infty}{\longrightarrow} 0,$ cf. remarque faite en 4.: le "reste" d'une intégrale convergente tend vers (
- **8.a.** Si $(C_3, C_4) \neq (0, 0)$, posons $A = \sqrt{C_3^2 + C_4^2}$, et θ réel tel que $\begin{cases} \cos \theta = \frac{C_3}{A} \\ \sin \theta = \frac{C_4}{A} \end{cases}$, on a alors A > 0 et $f(x) = C_3 \cos(x) + C_4 \sin(x) + r(x) = A \cos(x - \theta) + r(x)$, avec $\lim_{x \to 0} r(x) = 0$

d'après 7.b. Soit alors X un réel positif tel que $x \ge X \Longrightarrow |r(x)| < A$. Pour n entier naturel suffisamment grand (dès que $n\pi + \theta \ge X$), le nombre $f(n\pi + \theta) = (-1)^n A + r(n\pi + \theta)$ est du signe de $(-1)^n$. Comme en **2.e.** ou **2.f.**, on déduit que f s'annule une infinité de fois.

b. Si $(C_3, C_4) = (0, 0)$, on a alors $f(x) = -\int_x^{+\infty} q(t) f(t) \sin(t - x) dt$. Reprenons un réel positif a tel que $\int_{a}^{+\infty} |q(t)| dt \leq \frac{1}{2}$ et posons $M_a = \sup_{x \in [a, +\infty[} |f(x)|$. Pour $x \geq a$, on a

$$|f(x)| = \left| \int_x^{+\infty} f(t) q(t) \sin(x-t) dt \right| \le M_a \int_x^{+\infty} |q(t)| dt \le \frac{M_a}{2}.$$

En passant au sup, on a $M_a \leq \frac{M_a}{2}$ avec bien sûr $M_a \geq 0$. Donc $M_a = 0$, donc f est nulle sur $[a, +\infty[$. Mais ceci entraı̂ne notamment que f(a) = f'(a) = 0, donc f est la fonction nulle par le théorème de Cauchy.

PARTIE C. Théorème de Sturm et applications.

9.a. Pour tout n entier naturel, on a $\frac{f(a_n) - f(a)}{a_n - a} = 0$. La fonction f étant dérivable au point a, comme $\lim_{n \to +\infty} a_n = a$, on déduit, par composition de limites, $\lim_{n \to +\infty} \frac{f(a_n) - f(a)}{a_n - a} = f'(a)$. Donc f'(a) = 0. La fonction f est alors $\underline{\mathbf{la}}$ solution sur I du problème de Cauchy $\begin{cases} y'' + p(x) \ y = 0 \\ y(a) = 0. \end{cases}$

Mais la fonction nulle sur I est aussi solution de ce problème de Cauchy. Donc $\dot{f}=0$ sur

- b. Raisonnons par l'absurde: si, pour tout $\alpha > 0$, la fonction f admettait d'autres zéros que a dans l'ensemble $|a-\alpha,a+\alpha| \cap I$, alors pour tout n entier naturel non nul, il existerait un zéro de f (notons-le a_n), différent de a, dans $\left| a - \frac{1}{n}, a + \frac{1}{n} \right| \cap I$. On construirait ainsi (grâce à l'axiome du choix dénombrable!) une suite (a_n) de points de $I \setminus \{a\}$ en lesquels f s'annule. On déduirait alors du \mathbf{a} , que f est la fonction nulle, ce qui contredit l'hypothèse.
- 10.a. Comme f est de classe \mathcal{C}^2 , il est clair que W est de classe \mathcal{C}^1 , dérivons: après simplification,

$$W'(x) = -(f''(x) + \omega^2 f(x)) \sin(\omega(x - a)).$$

En utilisant le fait que f est solution de (E), on obtient

$$W'(x) = (p(x) - \omega^2) f(x) \sin(\omega(x - a)).$$

Pour $x \in \left[a, a + \frac{\pi}{\omega}\right]$, on a $0 \le \omega(x-a) \le \pi$, donc $\sin\left(\omega(x-a)\right) \ge 0$. Par hypothèse, on a aussi $p(x) - \omega^2 \ge 0$. Donc, sur l'intervalle $\left[a, a + \frac{\pi}{\omega}\right]$, W'(x) est du signe de f(x). Comme on suppose que f ne s'annule pas sur $\left[a, a + \frac{\pi}{\omega}\right]$, d'après le théorème des valeurs intermédiaires, elle est donc de signe constant (au sens large, en l'occurrence elle peut s'annuler au point a) sur le segment $\left[a, a + \frac{\pi}{\omega}\right]$, donc W' est aussi de signe constant sur ce même segment.

- **b.** Si f est strictement positive sur $\left[a, a + \frac{\pi}{\omega}\right]$, alors on a $W' \geq 0$ sur $\left[a, a + \frac{\pi}{\omega}\right]$, donc W est croissante sur cet intervalle. Par continuité de f, on a $f(a) \geq 0$, donc $W(a) = \omega$ $f(a) \geq 0$. Par ailleurs, $W\left(a + \frac{\pi}{\omega}\right) = -\omega$ $f\left(a + \frac{\pi}{\omega}\right) < 0$, il y a donc une contradiction.
- c. Par le TVI, on sait que f garde un signe constant au sens strict sur l'intervalle semi-ouvert $\left]a,a+\frac{\pi}{\omega}\right]$, il reste donc à examiner le cas où f est strictement négative sur cet intervalle. Sans difficulté, on a dans ce cas $W'\leq 0,\ W(a)\leq 0$ et $W\left(a+\frac{\pi}{\omega}\right)>0$, ce qui est aussi contradictoire. L'hypothèse de départ est donc fausse. On peut donc affirmer que f admet au moins un zéro dans l'intervalle $\left[a,a+\frac{\pi}{\omega}\right]$.
- 11. Il faut prouver que $\forall a \in \mathbb{R}_+ \quad \exists x \in \mathcal{Z}(f) \quad x > a$. Posons $p(x) = e^x$. Si on se donne $a \in \mathbb{R}_+$, alors, sur $[a, +\infty[$, on a $p(x) \ge e^a > 0$ car la fonction p est croissante. En appliquant la question 10. avec $\omega = e^{a/2}$, on voit qu'il existe au moins un zéro de f dans l'intervalle $\left]a, a + \frac{\pi}{\omega}\right]$, donc $\mathcal{Z}(f) \cap \left]a, +\infty[\neq \emptyset]$, ce qu'il fallait prouver.
- 12. D'après 11., l'ensemble $\mathcal{Z}(f) \cap \mathbb{R}_+^*$ est non vide. D'après 9.b., il existe $\alpha > 0$ tel que la fonction f ne s'annule pas dans l'intervalle $]0, \alpha[$. On a alors $\mathcal{Z}(f) \cap \mathbb{R}_+^* \subset [\alpha, +\infty[$, donc l'ensemble $\mathcal{Z}(f) \cap \mathbb{R}_+^*$ est minoré, il admet donc une borne inférieure m, et on a $m \geq \alpha$, donc m > 0. Il reste à prouver que $m \in \mathcal{Z}(f)$ pour affirmer que $m = \min \left(\mathcal{Z}(f) \cap \mathbb{R}_+^* \right)$.

Pour tout $n \in \mathbb{N}^*$, le nombre $m + \frac{1}{n}$ n'est pas un minorant de $\mathcal{Z}(f) \cap \mathbb{R}_+^*$ (puisque la borne inférieure m est, par définition, le plus grand minorant), il existe donc un élément a_n de $\mathcal{Z}(f) \cap \mathbb{R}_+^*$ tel que $m \le a_n < m + \frac{1}{n}$. On a alors $f(a_n) = 0$ pour tout n, et $\lim_{n \to +\infty} a_n = m$ par encadrement, donc, par continuité de f, f(m) = 0, ainsi $m \in \mathcal{Z}(f) \cap \mathbb{R}_+^*$, ce que l'on voulait prouver.

13. On peut construire par récurrence une suite de points $(x_n)_{n\in\mathbb{N}}$ par l'initialisation $x_0=0$ et la relation $\forall n\in\mathbb{N}$ $x_{n+1}=\min\left(\mathcal{Z}(f)\cap [x_n,+\infty[\,\right)$.

L'existence de ce minimum se prouve comme dans la question 12.

On dispose ainsi d'une suite (x_n) strictement croissante, telle que $\{x_n : n \in \mathbb{N}\} \subset \mathcal{Z}(f)$. Cette suite (x_n) tend vers $+\infty$. En effet, si ce n'était pas le cas, elle serait majorée (suite croissante) et aurait donc une limite finie l. Comme $\mathcal{Z}(f)$ est fermé et $l = \lim_{n \to +\infty} x_n$ avec $x_n \in \mathcal{Z}(f)$, on aurait alors $l \in \mathcal{Z}(f)$. Le point l ne serait alors pas "isolé" dans $\mathcal{Z}(f)$ puisqu'il serait limite d'une suite (x_n) de points de $\mathcal{Z}(f)$ distincts de l, ce qui contredit les résultats de la question 9.

Si $a \in \mathcal{Z}(f)$, l'ensemble $\{n \in \mathbb{N} \mid x_n \leq a\}$ est une partie de \mathbb{N} , non vide et majorée, elle admet donc un maximum N, on a $x_N \leq a$ par construction. D'autre part, $x_{N+1} > a$, donc si on avait $x_N < a$, cela entraînerait $x_N < a < x_{N+1}$, ce qui contredit la définition de $x_{N+1} = \min \left(\mathcal{Z}(f) \cap]x_N, +\infty \right[$). Finalement, $a = x_N$, ce qui montre l'autre inclusion $\mathcal{Z}(f) \subset \{x_n \; ; \; n \in \mathbb{N}\}$ et finalement l'égalité de ces deux ensembles.

Cette démonstration est quasiment identique à la démonstration du fait que toute partie infinie de \mathbb{N} est dénombrable, cf. poly de cours sur les suites.

L'ensemble $\mathcal{Z}(f)$ est donc dénombrable puisque l'application $\mathbb{N} \to \mathcal{Z}(f)$, $n \mapsto x_n$ est une bijection, ce qu'on appelle aussi une **énumération** de l'ensemble $\mathcal{Z}(f)$.

- **14.** C'est une conséquence facile de la question **10.** En prenant $a=x_n$ et $\omega=e^{\frac{x_n}{2}}$, la fonction $p:x\mapsto e^x$ vérifie $p(x)\geq \omega^2$ sur $[a,+\infty[$, et f est solution de y''+p(x)y=0 sur cet intervalle, donc f admet au moins un zéro dans l'intervalle $\left]a,a+\frac{\pi}{\omega}\right]=\left]x_n$, $x_n+\pi$ $e^{-\frac{x_n}{2}}\right]$, donc x_{n+1} appartient à ce dernier intervalle.
- **15.** On a vu que $\lim_{n \to +\infty} x_n = +\infty$, donc $\lim_{n \to +\infty} e^{-\frac{x_n}{2}} = 0$. Comme $0 \le x_{n+1} x_n \le \pi e^{-\frac{x_n}{2}}$, par encadrement, on déduit que $\lim_{n \to +\infty} (x_{n+1} x_n) = 0$.